Skip to main content

Einstein’s Field Equations, Their Special Mathematical Structure, and Some of Their Remarkable Physical Predictions

  • Chapter
  • First Online:
Inertia and Gravitation

Part of the book series: Lecture Notes in Physics ((LNP,volume 897))

  • 2546 Accesses

Abstract

In this section we first discuss some essential steps which Einstein took on his long and tedious route to the final formulation of general relativity, a route which is characterized by revolutionary and glorious ideas, but also (with hindsight) by distressing physical and mathematical errors and misjudgements. Then we report on the many different routes to general relativity which have been investigated up to today, and we argue that this quasi-uniqueness and ‘inevitability’ of general relativity is a special strength of this relativistic theory of gravitation. (Nevertheless, we cannot speak of a logical ‘derivation’ of the theory, since this would be impossible for any theory applying to new types of physical phenomena.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldersley, S.J.: Dimensional analysis in relativistic gravitational theories. Phys. Rev. D 15, 370–377 (1977)

    ADS  Google Scholar 

  • Andersson, L., Beig, R., Schmidt, B.G.: Rotating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 63, 559–589 (2010)

    MATH  MathSciNet  Google Scholar 

  • Andréasson, H., Kunze, M., Rein, G.: Existence of axially symmetric static solutions of the Einstein–Vlasov system. Commun. Math. Phys. 308, 23–47 (2011)

    ADS  MATH  Google Scholar 

  • Andréasson, H., Kunze, M., Rein, G.: Rotating, stationary, axially symmetric spacetimes with collisionless matter. Commun. Math. Phys. 329, 787–808 (2014)

    ADS  MATH  Google Scholar 

  • Ansorg, M., Pfister, H.: A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class. Quantum Gravit. 25, 035009 (2008)

    ADS  MathSciNet  Google Scholar 

  • Antonov, V.A.: Most probable phase distribution in spherical star systems and conditions for its existence. Vestn. Leningr. Univ., Math. Mekh., Astron. 7, 135–146 (1962). English translation In: Goodman, J., Hut, P. (eds.) IAU Symposion 113: Dynamics of Star Clusters, pp. 525–540. Reidel, Dordrecht (1985)

    Google Scholar 

  • Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962)

    Google Scholar 

  • Babichev, E., Langlois, D.: Relativistic stars in f(R) and scalar–tensor theories. Phys. Rev. D 81, 124051 (2010)

    ADS  Google Scholar 

  • Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    ADS  MATH  MathSciNet  Google Scholar 

  • Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    ADS  MathSciNet  Google Scholar 

  • Bizoń, P., Rostworowski, A.: On weakly turbulent stability of anti-deSitter spacetime. Phys. Rev. Lett. 107, 031102 (2011)

    ADS  Google Scholar 

  • Bojowald, M.: Absence of a singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001)

    ADS  MathSciNet  Google Scholar 

  • Bonazzola, S., Gourgoulhon, E., Salgado, M., Marck, J.A.: Axisymmetric rotating relativistic bodies: a new numerical approach for “exact” solutions. Astron. Astrophys. 278, 421–443 (1993)

    ADS  MathSciNet  Google Scholar 

  • Born, M.: Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Ann. Phys. 30, 1–56 (1909)

    MATH  Google Scholar 

  • Bradley, M., Fodor, G., Marklund, M., Perjés, Z.: The Wahlquist metric cannot describe an isolated rotating body. Class. Quantum Gravit. 17, 351–359 (2000)

    ADS  MATH  Google Scholar 

  • Bray, H.L.: Proof of the Riemannian Penrose conjecture using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)

    MATH  MathSciNet  Google Scholar 

  • Brill, D., Deser, S.: Positive definiteness of gravitational field energy. Phys. Rev. Lett. 20, 75–78 (1968)

    ADS  Google Scholar 

  • Brill, D., Horowitz, G.T.: Negative energy in string theory. Phys. Lett. B 262, 437–443 (1991)

    ADS  MathSciNet  Google Scholar 

  • Brill, D., Pfister, H.: States of negative total energy in Kaluza–Klein theory. Phys. Lett. B 228, 359–362 (1989)

    ADS  MathSciNet  Google Scholar 

  • Cartan, E.: Sur les équations de la gravitation d’Einstein, J. Math. pures et appliquées 1, 141–203 (1922)

    MATH  Google Scholar 

  • Cartan, E.: Leçons sur la Géométrie des Espaces de Riemann, Chap. VIII. Gauthier-Villars, Paris (1928)

    MATH  Google Scholar 

  • Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    ADS  MATH  Google Scholar 

  • CERN Courier: ALPHA presents novel investigation of the effect of gravity on antimatter, June 2013, p. 5

    Google Scholar 

  • Chandrasekhar, S.: The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82 (1931a)

    ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: Highly collapsed configurations of stellar mass. Mon. Not. R. Astron. Soc. 91, 456–466 (1931b)

    ADS  Google Scholar 

  • Choptuik, M.W.: Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1933)

    ADS  Google Scholar 

  • Choquet-(Fourès-)Bruhat, Y.: Théorème d’existence pour certain systèmes d’équations aux dérivées partielles nonlinéares. Acta Math. 88, 141–225 (1952)

    Google Scholar 

  • Choquet-Bruhat, Y.: The Cauchy problem. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 130–168. Wiley, New York (1962)

    Google Scholar 

  • Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford (2008)

    Google Scholar 

  • Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    ADS  MATH  MathSciNet  Google Scholar 

  • Choquet-Bruhat, Y., Marsden, J.E.: Solution of the local mass problem in general relativity. Commun. Math. Phys. 51, 283–296 (1976)

    ADS  MATH  MathSciNet  Google Scholar 

  • Christodoulou, D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Commun. Pure Appl. Math. 44, 339–373 (1991)

    MATH  MathSciNet  Google Scholar 

  • Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  • Chrusciel, P.T., Lopes Costa, J.: Mass, angular momentum, and charge inequalities for axisymmetric initial data. Class. Quantum Gravit. 26, 235013 (2009)

    ADS  Google Scholar 

  • Chruściel, P.T., Lopes Costa, J., Heusler, M.: Stationary Black Holes: Uniqueness and Beyond. Living Rev. Rel. 15(7) (2012), and E-print arXiv: 1205.6112 [gr-qc] (2012)

    Google Scholar 

  • Clifton, T., Ellis, G.F.R., Tavakol, R.: A gravitational entropy proposal. Class. Quantum Gravit. 30, 125009 (2013)

    ADS  MathSciNet  Google Scholar 

  • Corry, L., Renn, J., Stachel, J.: Belated decision in the Hilbert–Einstein priority dispute. Science 278, 1270–1273 (1997)

    ADS  MATH  MathSciNet  Google Scholar 

  • Dain, S.: Proof of the angular momentum–mass inequality for axisymmetric black holes. J. Differ. Geom. 79, 33–67 (2008)

    MATH  MathSciNet  Google Scholar 

  • Dain, S.: Extreme throat initial data sets and horizon area–angular momentum inequality for axisymmetric black holes. Phys. Rev. D 82, 104010 (2010)

    ADS  Google Scholar 

  • Dain, S.: Geometric inequalities for black holes. Gen. Relativ. Gravit. 46, 1715 (2014a)

    ADS  MathSciNet  Google Scholar 

  • Dain, S.: Inequality between size and angular momentum for bodies. Phys. Rev. Lett. 112, 041101 (2014b)

    ADS  Google Scholar 

  • Dain, S., Reiris, M.: Area–angular momentum inequality for axisymmetric black holes. Phys. Rev. Lett. 107, 05110 (2011)

    Google Scholar 

  • De Felice, A., Tsujikawa, S.: f(R)-Theories. Liv. Rev. Relativ. 13, 3 (2010)

    Google Scholar 

  • Dell, J.: On the impossibility of a box for holding gravitational radiation in thermal equilibrium. Gen. Relativ. Gravit. 19, 171–177 (1987)

    ADS  MathSciNet  Google Scholar 

  • Deser, S.: Self-interaction and gauge invariance. Gen. Relativ. Gravit. 1, 9–18 (1970)

    ADS  MathSciNet  Google Scholar 

  • Ehlers, J.: Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. In: Nitsch, J., et al. (eds.) Grundlagenprobleme der modernen Physik, pp. 65–84. Bibliographisches Institut, Mannheim (1981)

    Google Scholar 

  • Ehlers, J., Geroch, R.: Equation of motion of small bodies in relativity. Ann. Phys. 309, 232–236 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  • Ehrenfest, P.: Gleichförmige Rotation starrer Körper und Relativitätstheorie. Physik. Zs. 10, 918–928 (1909)

    MATH  Google Scholar 

  • Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik 4, 411–462 (1907)

    ADS  Google Scholar 

  • Einstein, A.: Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichts. Ann. Phys. 35, 898–908 (1911)

    MATH  Google Scholar 

  • Einstein, A.: Lichtgeschwindigkeit und Statik des Gravitationsfeldes. Ann. Phys. 38, 355–369 (1912a)

    MATH  Google Scholar 

  • Einstein, A.: Zur Theorie des statischen Gravitationsfeldes. Ann. Phys. 38, 443–458 (1912b)

    MATH  Google Scholar 

  • Einstein, A.: Gibt es eine Gravitationswirkung, die der elektromagnetischen Induktionswirkung analog ist?. Vierteljahrschrift f. gerichtl. Medizin u. öffentl. Sanitätswesen 44, 37–40 (1912c)

    ADS  Google Scholar 

  • Einstein, A.: Zum gegenwärtigen Stande des Gravitationsproblems. Physik. Zs. 14, 1249–1266 (1913a). English translation In: Renn, J. (ed.) The Genesis of General Relativity, vol. 3, pp. 543–568. Springer, Dordrecht (2004)

    Google Scholar 

  • Einstein, A.: Die formale Grundlage der allgemeinen Relativitätstheorie. Sitzb. d. Preuss. Akad. d. Wiss. Math.-phys. Kl., 1030–1085 (1914)

    Google Scholar 

  • Einstein, A.: Zur allgemeinen Relativitätstheorie. Sitzb. d. Preuss. Akad. d. Wiss. Math.-phys. Kl., 778–786, 799–801 (1915a)

    Google Scholar 

  • Einstein, A.: Erklärung der Periheldrehung des Merkur aus der allgemeinen Relativitätstheorie. Sitzb. d. Preuss. Akad. d. Wiss. Math.-phys. Kl., 831–839 (1915b)

    Google Scholar 

  • Einstein, A.: Die Feldgleichungen der Gravitation. Sitzb. d. Preuss. Akad. d. Wiss. Math.-phys. Kl., 844–847 (1915c)

    Google Scholar 

  • Einstein, A.: Die Grundlagen der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916)

    MATH  Google Scholar 

  • Einstein, A.: Über Gravitationswellen. Sitzb. Preuss. Akad. Wiss. Berlin, 154–167 (1918)

    Google Scholar 

  • Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Teubner, Leipzig (1913). Reprinted, together with an important addendum in Zs. f. Math. Phys. 62, 225–261 (1914)

    Google Scholar 

  • Eling, C., Guedens, R., Jacobson, T.: Nonequilibrium thermodynamics of spacetime. Phys. Rev. Lett. 96, 121301 (2006)

    ADS  MathSciNet  Google Scholar 

  • Feynman, R.P.: Lectures on Gravitation. Addison-Wesley, Reading (1995). Particularly lectures 3–6

    Google Scholar 

  • Fierz, M., Pauli, W.: Relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211–232 (1939)

    ADS  MathSciNet  Google Scholar 

  • Flanagan, E.: Hoop conjecture for black hole horizon formation. Phys. Rev. D 44, 2409–2420 (1991)

    ADS  MathSciNet  Google Scholar 

  • Friedman, M.: Foundations of Space-Time Theories. Princeton Univesity Press, Princeton (1983)

    Google Scholar 

  • Friedman, J.L., Stergioulas, N.: Rotating Relativistic Stars. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  • Friedrich, H.: Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant. J. Geom. Phys. 3, 101–117 (1986)

    ADS  MATH  MathSciNet  Google Scholar 

  • Friedrich, H.: On the AdS stability problem. Class. Quantum Gravit. 31, 105001 (2014)

    ADS  MathSciNet  Google Scholar 

  • Friedrichs, K.: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzübergangs vom Einsteinschen zum Newtonschen Gesetz. Math. Ann. 98, 566–575 (1927)

    MATH  MathSciNet  Google Scholar 

  • Gabach Clément, M.E., Jaramillo, J.L.: Black hole area–angular momentum–charge inequality in dynamical non-vacuum space-times. Phys. Rev. D 86, 064021 (2012)

    ADS  Google Scholar 

  • Gabach Clément, M.E., Jaramillo, J.L., Reiris, M.: Proof of the area–angular momentum–charge inequality for axisymmetric black holes. Class. Quantum Gravit. 30, 065017 (2013)

    ADS  Google Scholar 

  • Garfinkle, D., Wald, R.M.: On the possibility of a box for holding gravitational radiation in thermal equilibrium. Gen. Relativ. Gravit. 17, 461–473 (1985)

    ADS  MathSciNet  Google Scholar 

  • Gasperini, M.: The twin paradox in the presence of gravity. Mod. Phys. Lett. A 29, 1450149 (2014)

    ADS  MathSciNet  Google Scholar 

  • Genzel, R., Eisenhauer, F., Gillesen, S.: The Galactic center massive black hole and nuclear cluster. Rev. Mod. Phys. 82, 3121–3195 (2010)

    ADS  Google Scholar 

  • Gerlach, U.H.: Derivation of the ten Einstein field equations from the semiclassical approximation to quantum geometrodynamics. Phys. Rev. 177, 1929–1941 (1977)

    ADS  Google Scholar 

  • Gödel, K.: An example of a new type of cosmological solution of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949)

    ADS  MATH  Google Scholar 

  • Good, M.L.: K 2 0 and the equivalence principle. Phys. Rev. 121, 311–313 (1961)

    ADS  MathSciNet  Google Scholar 

  • Greene, J.E., Ho, L.C.: Active galactic nuclei with candidate intermediate-mass black holes. Astrophys. J. 610, 722–736 (2004)

    ADS  Google Scholar 

  • Gundlach, C., Martín-García, J.M.: Critical phenomena in gravitational collapse. Liv. Rev. Relativ. 10, 5 (2007)

    ADS  Google Scholar 

  • Gupta, S.N.: Gravitation and electromagnetism. Phys. Rev. 96, 1683–1685 (1954)

    ADS  MATH  MathSciNet  Google Scholar 

  • Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    ADS  Google Scholar 

  • Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    ADS  MathSciNet  Google Scholar 

  • Hawking, S., Ellis, G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  • Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529–548 (1970)

    ADS  MATH  MathSciNet  Google Scholar 

  • Heilig, U.: On the existence of rotating stars in general relativity. Commun. Math. Phys. 166, 457–493 (1995)

    ADS  MATH  MathSciNet  Google Scholar 

  • Hennig, J., Ansorg, M., Cederbaum, C.: A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter. Class. Quantum Gravit. 25, 162002 (2008)

    ADS  MathSciNet  Google Scholar 

  • Hennig, J., Cederbaum, C., Ansorg, M.: A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein–Maxwell theory. Commun. Math. Phys. 293, 449–467 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  • Hertz, H.: Die Constitution der Materie: Eine Vorlesung über die Grundlagen der Physik aus dem Jahre 1884. Springer, Berlin (1999)

    Google Scholar 

  • Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Hewish, A.S., Bell, J., Pilkington, J.D.H., Scott, R.F., Collins, R.A.: Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968)

    ADS  Google Scholar 

  • Hilbert, D.: Die Grundlagen der Physik. (Erste Mitteilung). Nachr. d. Königl. Ges. d. Wiss. Göttingen. Math.-phys. Kl., 395–407 (1916). English translation In: Renn, J. (ed.) The Genesis of General Relativity, vol. 4, pp. 1003–1016. Springer, Dordrecht (2007)

    Google Scholar 

  • Hilbert, D.: Die Grundlagen der Physik (Zweite Mitteilung). Nachr. d. Königl. Ges. d. Wiss. Göttingen. Math.-phys. Kl., 53–76 (1917). English translation In: Renn, J. (ed.) The Genesis of General Relativity, vol. 4, pp. 1931–1961. Springer, Dordrecht (2007)

    Google Scholar 

  • Holstein, B.R., Swift, A.R.: The relativity twins in free fall. Am. J. Phys. 40, 746–750 (1972)

    ADS  Google Scholar 

  • Horowitz, G.T., Perry, M.J.: Gravitational energy cannot become negative. Phys. Rev. Lett. 48, 371–374 (1982)

    ADS  MathSciNet  Google Scholar 

  • Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 352–437 (2001)

    MathSciNet  Google Scholar 

  • Hulse, R.A., Taylor, J.H.: Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53 (1975)

    ADS  Google Scholar 

  • Israel, W.: Dark stars: the evolution of an idea. In: Hawking, S.W., Israel, W. (eds.) Three Hundred Years of Gravitation. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  • Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995)

    ADS  MATH  MathSciNet  Google Scholar 

  • Klainerman, S., Nicolò, F.: On local and global aspects of the Cauchy problem in general relativity. Class. Quantum Gravit. 16, R73–R157 (1999)

    ADS  MATH  Google Scholar 

  • Klein, C.: Harrison transformation of hyperelliptic solutions and charged dust disks. Phys. Rev. D 65, 084029 (2002)

    ADS  MathSciNet  Google Scholar 

  • Klein, M.J., et al.: The Collected Papers of Albert Einstein, vol. 5. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  • Klein, M.J., et al.: The Collected Papers of Albert Einstein, vol. 4. Princeton University Press, Princeton (1995)

    Google Scholar 

  • Kraichnan, R.H.: Special-relativistic derivation of generally covariant gravitation theory. Phys. Rev. 98, 1118–1122 (1955)

    ADS  MATH  MathSciNet  Google Scholar 

  • Kramer, M., Wex, N.: The double pulsar system: a unique laboratory for gravity. Class. Quantum Gravit. 26, 073001 (2009)

    ADS  Google Scholar 

  • Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic, New York (1968)

    MATH  Google Scholar 

  • Lifschitz, E.M., Khalatnikov, I.M.: Investigations in relativistic cosmology. Adv. Phys. 12, 185–249 (1963)

    ADS  Google Scholar 

  • Lindblom, L., Masood-ul-Alam, A.K.M.: On the spherical symmetry of static stellar models. Commun. Math. Phys. 162, 123–145 (1994)

    ADS  MATH  MathSciNet  Google Scholar 

  • Lovelock, D.: The uniqueness of the Einstein field equations in a four-dimensional space. Arch. Ration. Mech. Anal. 33, 54–70 (1969)

    MATH  MathSciNet  Google Scholar 

  • Lovelock, D.: The four-dimensionality of space and the Einstein tensor. J. Math. Phys. 13, 874–876 (1972)

    ADS  MATH  MathSciNet  Google Scholar 

  • Ludvigsen, M., Vickers, J.A.G.: A simple proof of the positivity of Bondi mass. J. Phys. A 15, L67–L70 (1982)

    ADS  MathSciNet  Google Scholar 

  • Lynden-Bell, D.: Galactic nuclei as collapsed old quasars. Nature 223, 690–694 (1969)

    ADS  Google Scholar 

  • Lynden-Bell, D., Wood, R.: The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138, 495–525 (1968)

    ADS  Google Scholar 

  • Malament, D.: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. University of Chicago Press, Chicago (2012)

    MATH  Google Scholar 

  • Marder, L.: Time and the Space Traveller. George Allen and Unwin, London (1971)

    Google Scholar 

  • McConnell, N.J., et al.: Two ten-billion-solar mass black holes at the centres of giant elliptic galaxies. Nature 480, 215–218 (2011)

    ADS  MathSciNet  Google Scholar 

  • Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  • Narayan, R., McClintock, J.E.: Observational Evidence for Black Holes. E-print arXiv: 1312.6698v2 (2014)

    Google Scholar 

  • Navarro, J., Sancho, J.B.: On the naturalness of Einstein’s equation. J. Geom. Phys. 58, 1007–1014 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  • Newman, E.T., et al.: Metric of rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    ADS  Google Scholar 

  • Norton, J.: How Einstein found his field equations, 1912–1915. Hist. Stud. Phys. Sci. 14, 253–316 (1984). Reprinted In: Howard, D., Stachel, J. (eds.) Einstein and the History of General Relativity. Einstein Studies, vol. 1, pp. 101–159. Birkhäuser, Boston (1989)

    Google Scholar 

  • Norton, J.: What was Einstein’s principle of equivalence? Stud. Hist. Phil. Sci. 16, 203–246 (1985). Reprinted In: Howard, D., Stachel, J. (eds.) Einstein and the History of General Relativity. Einstein Studies, vol. 1, pp. 5–47. Birkhäuser, Boston (1989)

    Google Scholar 

  • Ohanian, H.C.: What is the principle of equivalence? Am. J. Phys. 45, 903–909 (1977)

    ADS  Google Scholar 

  • O’Murchadha, N., York, J.W.: Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds. J. Math. Phys. 14, 1551–1557 (1973)

    ADS  MATH  MathSciNet  Google Scholar 

  • Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)

    ADS  MATH  Google Scholar 

  • Oppenheimer, J.R., Volkoff, G.: On massive neutron cores. Phys. Rev. 55, 374–381 (1939)

    ADS  MATH  Google Scholar 

  • Padmanabhan, T.: Statistical mechanics of gravitating systems. Phys. Rep. 188, 285–362 (1990)

    ADS  MATH  MathSciNet  Google Scholar 

  • Pais, A.: ‘Subtle is the Lord …’. The Science and the Life of Albert Einstein. Oxford University Press, Oxford (1982)

    Google Scholar 

  • Palatini, A.: Deduzione invariantina delle equazioni gravitationali dal principio di Hamilton. Rend. Circ. Mat. Palermo 43, 203–212 (1919)

    MATH  Google Scholar 

  • Papapetrou, A.: Spinning test particles in general relativity. I. Proc. R. Soc. Lond. A 209, 248–258 (1951)

    ADS  MATH  MathSciNet  Google Scholar 

  • Park, J.: Spherically symmetric static solutions of the Einstein equations with elastic matter source. Gen. Relativ. Gravit. 32, 235–252 (2000)

    ADS  MATH  Google Scholar 

  • Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    ADS  MATH  MathSciNet  Google Scholar 

  • Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cimento 1, 252–276 (1969)

    Google Scholar 

  • Penrose, R.: Naked singularities. Ann. N. Y. Acad. Sci. 224, 125–134 (1973)

    ADS  Google Scholar 

  • Pfister, H.: A new and quite general existence proof for static and spherically symmetric perfect fluid stars in general relativity. Class. Quantum Gravit. 28, 075006 (2011)

    ADS  MathSciNet  Google Scholar 

  • Pfister, H., King, M.: The gyromagnetic factor in electrodynamics, quantum theory and general relativity. Class. Quantum Gravit. 20, 205–213 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  • Polchinski, J.: String Theory, vol. II. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Raychaudhuri, A.: Relativistic cosmology. I. Phys. Rev. 98, 1123–1126 (1955)

    ADS  MATH  MathSciNet  Google Scholar 

  • Rein, G., Rendall, A.D.: Smooth static solutions of the spherically symmetric Vlasov–Einstein system. Ann. Inst. Poincaré 59, 383–397 (1993)

    MATH  MathSciNet  Google Scholar 

  • Rendall, A.D., Schmidt, B.G.: Existence and properties of spherically symmetric static fluid bodies with a given equation of state. Class. Quantum Gravit. 8, 985–1000 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  • Reula, O.: Existence theorem for solutions of Witten’s equation and nonnegativity of total mass. J. Math. Phys. 23, 810–814 (1982)

    ADS  MATH  MathSciNet  Google Scholar 

  • Reula, O.: On existence and behaviour of asymptotically flat solutions of the stationary Einstein equations. Commun. Math. Phys. 122, 615–624 (1989)

    ADS  MATH  MathSciNet  Google Scholar 

  • Rose, B.: Construction of matter models which violate the strong energy condition and may avoid the initial singularity. Class. Quantum Gravit. 3, 975–995 (1986)

    ADS  MATH  Google Scholar 

  • Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Doklady 12, 1040–1041 (1968)

    ADS  Google Scholar 

  • Schaudt, U.M.: On the Dirichlet problem for the stationary and axisymmetric Einstein equations. Commun. Math. Phys. 190, 509–540 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  • Schaudt, U.M., Pfister, H.: The boundary value problem for the stationary and axisymmetric Einstein equations is generically solvable. Phys. Rev. Lett. 77, 3284–3287 (1996)

    ADS  MATH  MathSciNet  Google Scholar 

  • Schild, A.: The clock paradox in relativity theory. Am. Math. Mon. 66, 1–18 (1959)

    MathSciNet  Google Scholar 

  • Schlamminger, S., et al.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)

    ADS  Google Scholar 

  • Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    ADS  MATH  MathSciNet  Google Scholar 

  • Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231–260 (1981)

    ADS  MATH  MathSciNet  Google Scholar 

  • Schoen, R, Yau, S.-T.: Proof that the Bondi mass is positive. Phys. Rev. Lett. 48, 369–371 (1982)

    ADS  MathSciNet  Google Scholar 

  • Schulman, R., et al.: The Collected Papers of Albert Einstein, vol. 8. Princeton University Press, Princeton (1998)

    Google Scholar 

  • Serrin, J.: The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R. Soc. 264, 413–496 (1969)

    ADS  MATH  MathSciNet  Google Scholar 

  • Shapiro, S.L., Teukolsky, S.A.: Formation of naked singularities: the violation of cosmic censorship. Phys. Rev. Lett. 66, 994–997 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  • Smolin, L.: The thermodynamics of gravitational radiation. Gen. Relativ. Gravit. 16, 205–210 (1984)

    ADS  MathSciNet  Google Scholar 

  • Smolin, L.: On the intrinsic entropy of the gravitational field. Gen. Relativ. Gravit. 17, 417–437 (1985)

    ADS  MathSciNet  Google Scholar 

  • Sornette, D.: Critical Phenomena in Natural Sciences. Springer, Berlin (2009)

    Google Scholar 

  • Sotirio, T.P., Faraoni, V.: f(R)-theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    Google Scholar 

  • Square, A., Abbott, E.E.: Flatland. A Romance of Many Dimensions. Seeley, London (1884). Reprinted, with an introduction by A. Lightman. Penguin, New York (1998)

    Google Scholar 

  • Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Synge, J.L.: Relativity: The General Theory. North Holland, Amsterdam (1960)

    MATH  Google Scholar 

  • Szabados, L.B.: Quasi-local energy–momentum and angular momentum in general relativity. Liv. Rev. Relativ. 7, 4 (2004)

    ADS  Google Scholar 

  • Taubes, C.H., Parker, T.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    ADS  MATH  MathSciNet  Google Scholar 

  • Taylor, J.H., Fowler, L.A., McCulloch, P.M.: Measurement of general relativistic effects in the binary pulsar PSR 1913+16. Nature 277, 437–440 (1979)

    ADS  Google Scholar 

  • Thirring, W.E.: An alternative approach to the theory of gravitation. Ann. Phys. 16, 96–117 (1961)

    ADS  MATH  MathSciNet  Google Scholar 

  • Thirring, W.: Systems with negative specific heat. Zs. Physik 235, 339–352 (1970)

    ADS  Google Scholar 

  • Thorne, K.S.: Nonspherical gravitational collapse—a short review. In: Klauder, J. (ed.) Magic Without Magic, pp. 231–258. Freeman, San Francisco (1972)

    Google Scholar 

  • Tolman, R.C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939)

    ADS  Google Scholar 

  • Vermeil, H.: Notiz über das mittlere Krümmungsmass einer n-fach ausgedehnten Riemann’schen Mannigfaltigkeit. Nachr. d. Ges. d. Wiss. Göttingen math.-phys. Kl., 334–344 (1917)

    Google Scholar 

  • Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  • Weinberg, S.: Dynamic and algebraic symmetries. In: Deser, S., et al. (eds.), 1970 Brandeis University Summer Institute in Theoretical Physics, vol. 1, pp. 283–393. MIT Press, Cambridge (1970)

    Google Scholar 

  • Weyl, H.: Space–Time–Matter. Methuen, London (1922)

    MATH  Google Scholar 

  • Wheeler, J.A.: Geometrodynamics. Academic, New York (1962)

    MATH  Google Scholar 

  • Wheeler, J.A.: Gravitation as geometry. II. In: Chiu, H.Y., Hoffmann, W.F. (eds.) Gravitation and Relativity. Benjamin, New York (1964)

    Google Scholar 

  • Wheeler, J.A.: Our universe: the known and the unknown. Am. Sci. 56, 1–20 (1968)

    ADS  Google Scholar 

  • Will, C.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    ADS  MATH  MathSciNet  Google Scholar 

  • Witten, E.: Instability of the Kaluza–Klein vacuum. Nucl. Phys. B195, 481–492 (1982)

    ADS  Google Scholar 

  • Witten, E.: Reflection on the fate of spacetime. Phys. Today, April 1996, 24–30

    Google Scholar 

  • Yang, S.: On the geodesic hypothesis in general relativity. Commun. Math. Phys. 325, 997–1062 (2014)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pfister, H., King, M. (2015). Einstein’s Field Equations, Their Special Mathematical Structure, and Some of Their Remarkable Physical Predictions. In: Inertia and Gravitation. Lecture Notes in Physics, vol 897. Springer, Cham. https://doi.org/10.1007/978-3-319-15036-9_3

Download citation

Publish with us

Policies and ethics