Skip to main content

How to Talk to Each Other via Computers: Semantic Interoperability as Conceptual Imitation

  • Chapter
Applications of Conceptual Spaces

Part of the book series: Synthese Library ((SYLI,volume 359))

Abstract

What exactly does interoperability mean in the context of information science? Which entities are supposed to interoperate, how can they interoperate, and when can we say they are interoperating? This question, crucial to assessing the benefit of semantic technology and information ontologies, has been understood so far primarily in terms of standardization, alignment and translation of languages. In this article, we argue for a pragmatic paradigm of interoperability understood in terms of conversation and reconstruction. Based on examples from geographic information and land cover classification, we argue that semantic heterogeneity is to a large extent a problem of multiple perspectives. It therefore needs to be addressed not by standardization and alignment, but by articulation and reconstruction of perspectives. Reconstruction needs to be grounded in shared operations. What needs to be standardized is therefore not the perspective on a concept, but the procedure to arrive at different perspectives. We propose conceptual imitation as a synthetic learning approach, and conceptual spaces as a constructive basis. Based on conceptual imitation, information provider and user concepts can be checked for perspectival correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Compare the role of metadata in Gray et al. (2005).

  2. 2.

    http://schema.org/

  3. 3.

    http://zacharyvoase.com/2009/11/02/bioinformatics-semWeb/

  4. 4.

    Similar to traffic locomotion affordances (Scheider and Kuhn 2010).

  5. 5.

    International Panel on Climate Change, http://www.ipcc.ch/

  6. 6.

    Quine based his famous arguments of indeterminacy of theory (Quine 1951) as well as reference (Quine 1974) on multiperspectivity.

  7. 7.

    Better captured by the German term “Kulturtechniken”.

  8. 8.

    Compare Chapter 6.1 in Stuckenschmidt and van Harmelen (2003).

  9. 9.

    http://www.iso.org

  10. 10.

    The history of this fundamental misunderstanding can be traced back to Morris’ naturalized semiotic process and Shannon and Weaver’s mechanistic information theory, and can be currently studied in terms of modern nonsense about “information” allegedly being “transferred and understood by machines, computers, and DNA molecules” (Janich 2006).

  11. 11.

    Uniform resource identifier.

  12. 12.

    Resource Description Framework, http://www.w3.org/RDF/

  13. 13.

    For a proposal how central spatial concepts can be based on Braitenberg vehicles, see Both et al. (2013).

  14. 14.

    Compare also the arguments given in Chapter 3 of Scheider (2012).

  15. 15.

    Machine learning is analytic in the sense that it prescribes a constructive basis (e.g., in terms of a vector calculus in support vector machines (Hastie et al. 2001)) or automatically selects it based on observed behaviour (as in Bayesian model selection).

  16. 16.

    The “instantaneous field of view” (IFoV) of a satellite is an example for the latter.

  17. 17.

    According to Lorenzen, a calculus is a set of rules used to generate “figures from other figures” (Lorenzen 1955).

  18. 18.

    These are sentences without variables.

  19. 19.

    Note that we do not require a decision procedure for the entire constructive calculus, only for the predicates of interest. This allows to use unrestricted FOL or HOL as the most flexible syntactic standard, but comes at the price of caring about the computation of decisions on a case-to-case basis.

  20. 20.

    This aspect of similarity is based on experiential equivalence and is not discussed in this article.

  21. 21.

    This can be gleened from the fact that Lund (2006) proposes a decision tree which enforces mutual exclusiveness of cropland and forest by defining cropland based on cultivation as well as the logical complement of forest.

  22. 22.

    http://ontolog.cim3.net/cgi-bin/wiki.pl?EarthScienceOntolog

  23. 23.

    musil.uni-muenster.de

References

  • Adams, B., & Janowicz, K. (2011). Constructing geo-ontologies by reification of observation data. In Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems, GIS ’11, Chicago (pp. 309–318). New York: ACM.

    Google Scholar 

  • Adams, B., & Raubal, M. (2009). A metric conceptual space algebra. In K. Hornsby, C. Claramunt, M. Denis, & G. Ligozat (Eds.), Proceedings of spatial information theory, 9th international conference, COSIT 2009, Aber Wrac’h, September 21–25, 2009 (pp. 51–68). Berlin: Springer.

    Google Scholar 

  • Austin, J. (1953). How to talk. Some simple ways. In Proceedings of the Aristotelian society (Vol. 53, pp. 227–246).

    Google Scholar 

  • Baglatzi, A., & Kuhn, W. (2013). On the formulation of conceptual spaces for land cover classification systems. In Geographic information science at the heart of Europe (pp. 173–188). Cham/New York: Springer.

    Google Scholar 

  • Beule, J. D., & Steels, L. (2005). Hierarchy in fluid construction grammars. In KI, Koblenz (pp. 1–15).

    Google Scholar 

  • Booth, D. (2006). URIs and the Myth of Resource Identity. http://www.ibiblio.org/hhalpin/irw2006/dbooth.pdf.

  • Both, A., Kuhn, W., & Duckham, M. (2013). Spatiotemporal Braitenberg vehicles. In 21st SIGSPATIAL international conference on advances in geographic information systems, SIGSPATIAL 2013, Orlando, November 5–8, 2013 (pp. 74–83). ACM.

    Google Scholar 

  • Braitenberg, V. (1986). Vehicles. Experiments in synthetic psychology. Cambridge: MIT.

    Google Scholar 

  • Brodaric, B. (2007). Geo-pragmatics for the geospatial semantic web. Transactions in GIS, 11(3), 453–477.

    Google Scholar 

  • Brodaric, B., & Gahegan, M. (2007). Experiments to examine the situated nature of geoscientific concepts. Spatial Cognition & Computation, 7(1), 61–95.

    Google Scholar 

  • Couclelis, H. (1992). People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In A. Frank, I. Campari, & U. Formentini (Eds.), Spatio-temporal reasoning (pp. 65–77). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Couclelis, H. (2010). Ontologies of geographic information. International Journal of Geographical Information Science, 24(12), 1785–1809.

    Google Scholar 

  • Euzenat, J., & Shvaiko, P. (2007). Ontology matching. New York/Secaucus: Springer.

    Google Scholar 

  • Frank, A. (2009). Scale is introduced in spatial datasets by observation processes. In Spatial data quality. From process to decision (6th ISSDQ 2009), St. John’s (pp. 17–29). CRC Press.

    Google Scholar 

  • Gärdenfors, P. (2000). Conceptual spaces – The geometry of thought. Cambridge: MIT.

    Google Scholar 

  • Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A., DeWitt, D., & Heber, G. (2005). Scientific data management in the coming decade. CoRR abs/cs/0502008.

    Google Scholar 

  • Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics: Speech acts (Vol. 3, pp. 41–58). San Diego: Academic.

    Google Scholar 

  • Guarino, N. (1998). Formal ontology and information systems. In N. Guarino (Ed.), Formal ontology in information systems: Proceedings of the first international conference (FOIS ’98), Trento, June 6–8 (Frontiers in artificial intelligence and applications, Vol. 46). Amsterdam: IOS-Press [u.a.].

    Google Scholar 

  • Halpin, H. (2013). Social semantics – The search for meaning on the web (Semantic web and beyond, Vol. 13). New York: Springer.

    Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.

    Google Scholar 

  • Harvey, F., Kuhn, W., Pundt, H., Bishr, Y., & Riedemann, C. (1999). Semantic interoperability: A central issue for sharing geographic information. The Annals of Regional Science, 33,213–232.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.

    Google Scholar 

  • Hyvönen, E. (2012). Publishing and using cultural heritage linked data on the semantic web (Synthesis lectures on the semantic web). San Rafael: Morgan & Claypool Publishers.

    Google Scholar 

  • Janich, P. (2006). Was ist Information? Kritik einer Legende. Frankfurt a. M.: Suhrkamp.

    Google Scholar 

  • Janowicz, K. (2012). Observation-driven geo-ontology engineering. Transactions in GIS, 16(3), 351–374.

    Google Scholar 

  • Janowicz, K., & Hitzler, P. (2012). The digital earth as knowledge engine. Semantic Web Journal, 3(3), 213–221.

    Google Scholar 

  • Janowicz, K., Scheider, S., Pehle, T., & Hart, G. (2012). Geospatial semantics and linked spatiotemporal data – Past, present, and future. Semantic Web, 3(4), 321–332.

    Google Scholar 

  • Johnson-Laird, P. (1997). Procedural semantics. Cognition, 5, 189–214.

    Google Scholar 

  • Kamlah, W., & Lorenzen, P. (1996). Logische Propädeutik. Vorschule des vernünftigen Redens (3rd ed.). Stuttgart/Weimar: J.B. Metzler.

    Google Scholar 

  • Köhler, W. (1992). Gestalt psychology. An introduction to new concepts in modern psychology. New York: Liveright.

    Google Scholar 

  • Kuhn, W. (2003). Semantic reference systems. International Journal of Geographical Information Science, 17 (5), 405–409.

    Google Scholar 

  • Lehar, S. (2003). The world in your head. A gestalt view of the mechanism of conscious experience. Mahwah/London: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Berlin: Springer.

    Google Scholar 

  • Lund, H. G. (2006). Guide for classifying lands for greenhouse gas inventories. Journal of Forestry, 104(4), 211–216.

    Google Scholar 

  • Lund, H. (2012). Definitions of forest, deforestation, reforestation and afforestation. Technical report, Forest Information Services, Gainesville. http://home.comcast.net/%7Egyde/DEFpaper.htm.

  • Madin, J. S., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., & Villa, F. (2007). An ontology for describing and synthesizing ecological observation data. Ecological Informatics, 2(3), 279–296.

    Google Scholar 

  • Mark, D. M. (1993). Toward a theoretical framework for geographic entity types. In A. U. Frank & I. Campari (Eds.), Spatial information theory a theoretical basis for GIS (Lecture notes in computer science, Vol. 716, pp. 270–283). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Masolo, C., Borgo, S., Gangemi, A., Guarino, N., & Oltramari, A. (2003). Wonderweb deliverable d18: Ontology library. Trento.

    Google Scholar 

  • Mitchell, T. (1980). The need for biases in learning generalizations (Cbm-tr 5-110). Rutgers University.

    Google Scholar 

  • Nipkow, T., Wenzel, M., Paulson, L. C. (2002). Isabelle/HOL: A proof assistant for higher-order logic. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Quine, W. (1951). Two dogmas of empiricism. The Philosophical Review, 60, 20–43.

    Google Scholar 

  • Quine, W. (1974). The roots of reference. La Salle: Open Court Publishing.

    Google Scholar 

  • Quine, W. (2001). Word and object (24th ed.). Cambridge: MIT.

    Google Scholar 

  • Riedemann, C., & Kuhn, W. (1999). What are sports grounds? Or: Why semantics requires interoperability. In A. Vckovski, K. E. Brassel, & H. J. Schek (Eds.), Interoperating geographic information systems (Lecture notes in computer science, Vol. 1580, pp. 217–229). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Sauser, E. L., & Billard, A. G. (2005). View sensitive cells as a neural basis for the representation of others in a self-centered frame of reference. In 3rd international symposium on imitation in animals & artifacts, Hatfield (pp. 119–127).

    Google Scholar 

  • Scarantino, A. (2003). Affordances explained. Philosophy of Science, 70, 949–961.

    Google Scholar 

  • Scheider, S. (2012). Grounding geographic information in perceptual operations (Frontiers in artificial intelligence and applications, Vol. 244). Amsterdam: IOS Press.

    Google Scholar 

  • Scheider, S., & Kuhn, W. (2010). Affordance-based categorization of road network data using a grounded theory of channel networks. International Journal of Geographical Information Science, 24(8), 1249–1267.

    Google Scholar 

  • Scheider, S., & Kuhn, W. (2011). Finite relativist geometry grounded in perceptual operations. In M. Egenhofer, N. Giudice, R. Morath, & M. Worboys (Eds.), Spatial information theory: 10th international conference, COSIT 2011, Belfast (Lecture notes in computer science, Vol. 6899, pp. 304–327). Berlin: Springer.

    Google Scholar 

  • Scheider, S., & Stasch, C. (2015, forthcoming). The semantics of sensor observations based on attention. In G. Marchetti, G. Benedetti, & A. Alharbi (Eds.), Attention and meaning: The attentional basis of meaning. New York: Nova.

    Google Scholar 

  • Shirky, C. (2009). Ontology is overrated. http://www.shirky.com/writings/ontology_overrated.html.

  • Steels, L. (1997). Constructing and sharing perceptual distinctions. In M. Someren & G. Widmer (Eds.), Machine learning: ECML-97 (Lecture notes in computer science, Vol. 1224, pp. 4–13), Berlin/Heidelberg: Springer.

    Google Scholar 

  • Steels, L. (2002). Grounding symbols through evolutionary language games. In A. Cangelosi & D. Parisi (Eds.), Simulating the evolution of language (pp. 211–226). New York: Springer.

    Google Scholar 

  • Steels, L. (2003). Social language learning. In M. Tokoro & L. Steels (Eds.), The future of learning (pp. 133–162). Amsterdam: MIT.

    Google Scholar 

  • Steels, L. (2008). The symbol grounding problem has been solved. So what’s next? In M. de Vega (Ed.), Symbols and embodiment: Debates on meaning and cognition, chap 12. Oxford: Oxford University Press.

    Google Scholar 

  • Stuckenschmidt, H., & van Harmelen, F. (2003). Information sharing on the semantic web. Heidelberg: Springer.

    Google Scholar 

  • Tomasello, M. (1999). The cultural origins of human cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Wittgenstein, L. (2003). Philosophische Untersuchungen. Frankfurt a. M.: Suhrkamp.

    Google Scholar 

Download references

Acknowledgements

A draft of the ideas in this article was presented at the EarthScienceOntolog session-3 at 10/11/2012.Footnote 22 Research was funded by the International Research Training Group on Semantic Integration of Geospatial Information (DFG GRK 1498), and by the research fellowship grant DFG SCHE 1796/1-1. We thank Helen Couclelis, Benjamin Adams, Krzysztof Janowicz and MUSILFootnote 23 for discussions that helped shape this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Scheider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scheider, S., Kuhn, W. (2015). How to Talk to Each Other via Computers: Semantic Interoperability as Conceptual Imitation. In: Zenker, F., Gärdenfors, P. (eds) Applications of Conceptual Spaces. Synthese Library, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-319-15021-5_6

Download citation

Publish with us

Policies and ethics