Skip to main content

Cartesian Products of Z-matrix Networks: Factorization and Interval Analysis

  • Chapter
  • First Online:
Semi-Autonomous Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 608 Accesses

Abstract

This chapter examines the relationship between the dynamics of large networks and of their smaller factor networks (factors) obtained through the factorization of the network’s digraph representation. We specifically examine dynamics of networks which have Z-matrix state matrices. We perform a Cartesian product decomposition on its network structure producing factors which also have Z-matrix dynamics. A factorization lemma is presented that represents the trajectories of the large network in terms of the factors’ trajectories. An interval matrix lemma provides families of network dynamics whose trajectories are bounded by the interval bounds’ factors’ trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

    Article  Google Scholar 

  2. H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,” IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 443–455, 2004.

    Article  Google Scholar 

  3. M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton: Princeton University Press, 2010.

    MATH  Google Scholar 

  4. R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University Press, 1990.

    MATH  Google Scholar 

  5. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Academic Press, 1979.

    Google Scholar 

  6. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, “Complex networks: structure and dynamics,” Physics Reports, vol. 424, no. 4–5, pp. 175–308, 2006.

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Ganguly, A. Deutsch, and A. Mukherjee, Dynamics on and of Complex Networks: Applications to Biology, Computer Science, and the Social Sciences. Boston: Birkhauser, 2009.

    Book  Google Scholar 

  8. L. Kocarev and G. Vattay, Complex Dynamics in Communication Networks. Berlin: Springer, 2005.

    Book  Google Scholar 

  9. A. Nguyen and M. Mesbahi, “A factorization lemma for the agreement dynamics,” in 46th IEEE Conference on Decision and Control, no. 1, 2007, pp. 288–293.

    Google Scholar 

  10. W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition. New York: Wiley, 2000.

    Google Scholar 

  11. G. Sabidussi, “Graph multiplication,” Mathematische Zeitschrift, vol. 72, pp. 446–457, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. G. Vizing, “The Cartesian product of graphs,” Vycisl. Sistemy, pp. 30–43, 1963.

    Google Scholar 

  13. J. Feigenbaum, “Directed graphs have unique Cartesian factorizations that can be found in polynomial time,” Discrete Applied Mathematics, vol. 15, pp. 105–110, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Mansour, “Robust stability of interval matrices,” in Proc. 28th IEEE Conference on Decision and Control, 1989, pp. 46–51.

    Google Scholar 

  15. J. Rohn, “Forty necessary and sufficient conditions for regularity of interval matrices: a survey,” Electronic Journal Of Linear Algebra, vol. 18, pp. 500–512, 2009.

    MATH  MathSciNet  Google Scholar 

  16. A. Chapman and M. Mesbahi, “Advection on graphs,” in Proc. 50th IEEE Conference on Decision and Control, 2011, pp. 1461–1466.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chapman, A. (2015). Cartesian Products of Z-matrix Networks: Factorization and Interval Analysis. In: Semi-Autonomous Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-15010-9_6

Download citation

Publish with us

Policies and ethics