Skip to main content

Network Topology Design for UAV Swarming with Wind Gusts

  • Chapter
  • First Online:
  • 652 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The cornerstone of effective topology design for networked systems is the appreciation of the interplay between system performance and network structure. In this chapter, we examine the problem of unmanned aerial vehicle (UAV) swarming in the presence of wind gusts. Firstly, we model an altitude consensus-based leader–follower model exposed to gust disturbances. We then proceed to examine system-theoretic and topological features that promote network disturbance rejection. Specifically the open loop \(\mathcal{H}_{2}\) norm of the system is selected as a performance metric. Its topological features are highlighted via a realization of the open loop \(\mathcal{H}_{2}\) norm in terms of the effective resistance of the corresponding electrical network. We subsequently utilize mixed-integer semidefinite programming (MISDP) to generate the optimal unweighed network to minimize this metric. This is then followed by exploiting the open loop \(\mathcal{H}_{2}\) norm related topological features to design a network rewiring protocol to maximize this metric. Finally, these topology design tools are applied to wind gust rejection in disturbed swarming scenarios, demonstrating the viability of topology-assisted design for improved performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Rayleigh’s Monotonicity Law states that if the edge resistance in an electrical network is decreased, then the effective resistance between any two agents in the network can only decrease [1].

References

  1. B. Bollobás, Modern Graph Theory. New York: Springer, 1998.

    Book  MATH  Google Scholar 

  2. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

    Article  Google Scholar 

  3. H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,” IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 443–455, 2004.

    Article  Google Scholar 

  4. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

    Article  MathSciNet  Google Scholar 

  5. M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton: Princeton University Press, 2010.

    MATH  Google Scholar 

  6. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.

    Article  MathSciNet  Google Scholar 

  7. D. Zelazo and M. Mesbahi, “Edge agreement: graph-theoretic performance bounds and passivity analysis,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 544–555, Mar. 2011.

    Article  MathSciNet  Google Scholar 

  8. A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of a graph,” SIAM Review, vol. 50, no. 1, pp. 37–66, 2008.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Y. Wan, S. Roy, and A. Saberi, “Network design problems for controlling virus spread,” in Proc. 46th IEEE Conference on Decision and Control, 2007, pp. 3925–3932.

    Google Scholar 

  10. P. Barooah and J. P. Hespanha, “Graph effective resistance and distributed control: spectral properties and applications,” in Proc. 45th IEEE Conference on Decision and Control, 2006, pp. 3479–3485.

    Google Scholar 

  11. G. Tyson, A. T. Lindsay, S. Simpson, and D. Hutchison, “Improving wireless sensor network resilience with the INTERSECTION framework,” in Proc. 2nd International Conference on Mobile Lightweight Wireless Systems, Critical Information Infrastructure Protection, 2010.

    Google Scholar 

  12. S. Salsa, Partial Differential Equations in Action: From Modelling to Theory. New York: Springer, 2008.

    Google Scholar 

  13. T. J. Mueller, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. Danvers: AIAA, 2001.

    Book  Google Scholar 

  14. D. J. Pines and F. Bohorquez, “Challenges facing future micro-air-vehicle development,” Journal of Aircraft, vol. 43, no. 2, pp. 290–305, 2006.

    Article  Google Scholar 

  15. W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu, Aerodynamics of Low Reynold Number Flyers. New York: Cambridge University Press, 2007.

    Book  Google Scholar 

  16. E. R. Ulrich, D. J. Pines, and J. S. Humbert, “Pitch and heave control of robotic Samara micro air vehicles,” Journal of Aircraft, vol. 47, no. 4, pp. 1290–1299, 2010.

    Article  Google Scholar 

  17. S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. McLain, and R. Beard, Advances in Unmanned Aerial Vehicles: State of the art and the road to autonomy, K. P. Valavanis, Ed. Dordrecht, The Netherlands: Springer Verlag, 2007.

    Google Scholar 

  18. W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Cooperative Control. New York: Springer Verlag, 2007.

    Google Scholar 

  19. J. P. How, B. Bethke, A. Frank, D. Dale, and V. J, “Real-time indoor autonomous vehicle test environment,” IEEE Control Systems Magazine, vol. 28, no. 2, pp. 51–64, 2008.

    Google Scholar 

  20. N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro-UAV testbed,” IEEE Robotics and Automation Magazine, vol. 17, no. 3, pp. 56–65, 2010.

    Article  Google Scholar 

  21. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in International Conferences on Robotics and Automation, 2011, pp. 2520–2525.

    Google Scholar 

  22. L. Mutuel and R. Douglas, “Controller design for low speed flight in turbulence,” in AIAA Guidance, Navigation, and Control Conference, 1997, pp. 1111–1121.

    Google Scholar 

  23. B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation. Hoboken: Wiley, 2003.

    Google Scholar 

  24. J. Hall, “Lateral control and observation of a micro aerial vehicle,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, pp. 8–11.

    Google Scholar 

  25. W. Shyy, Y. Lian, J. Tang, H. Liu, P. Trizila, B. Stanford, L. Bernal, C. Cesnik, P. Friedmann, and P. Ifju, “Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications,” in 46th AIAA Aerospace Sciences Meeting and Exhibit, vol. 24, no. 4, Jul. 2008, pp. 1–33.

    Google Scholar 

  26. T. Cheviron, “Robust control of an autonomous reduced scale helicopter in presence of wind gusts,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006, pp. 1–22.

    Google Scholar 

  27. C.-d. Yang, W.-h. Liu, P.-w. Chang, and H.-j. Weng, “Decoupling control for hovering flight vehicle with parameter uncertainties,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, no. 1, 2006, pp. 1–13.

    Google Scholar 

  28. N. Meskin, K. Khorasani, and C. A. Rabbath, “A hybrid fault detection and isolation strategy for a network of unmanned vehicles in presence of large environmental disturbances,” IEEE Transactions on Control Systems Technology, no. August, Nov. 2010.

    Google Scholar 

  29. X. Li and L. Cao, “Largest Laplacian eigenvalue predicts the emergence of costly punishment in the evolutionary ultimatum game on networks,” Physical Review E - Statistical, Nonlinear and Soft Matter Physics, 80(6 Pt 2), vol. 80, p. 066101, 2009.

    Google Scholar 

  30. A. Ghosh and S. Boyd, “Growing well-connected graphs,” in Proc. 45th IEEE Conference on Decision and Control. IEEE, 2006, pp. 6605–6611.

    Google Scholar 

  31. J. Lofberg, “YALMIP: a toolbox for modeling and optimization in MATLAB,” in 2004 IEEE International Symposium, 2004, pp. 284–289.

    Google Scholar 

  32. Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 116–120, Jan. 2006.

    Article  MathSciNet  Google Scholar 

  33. Z. Wu and R. Wang, “The consensus in multi-agent system with speed-optimized network,” International Journal of Modern Physics B, vol. 23, no. 10, pp. 2339–2348, 2009.

    Article  ADS  MATH  Google Scholar 

  34. A. Chapman and M. Mesbahi, “Semi-autonomous consensus: network measures and adaptive trees,” IEEE Transactions on Automatic Control, vol. 58, no. 1, pp. 19–31, 2013.

    Article  MathSciNet  Google Scholar 

  35. A. Chapman and M. Mesbahi, “Semi-autonomous networks: network resilience and adaptive trees,” in Proc. 49th IEEE Conference on Decision and Control, no. 2, 2010, pp. 7473–7478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chapman, A. (2015). Network Topology Design for UAV Swarming with Wind Gusts. In: Semi-Autonomous Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-15010-9_5

Download citation

Publish with us

Policies and ethics