Skip to main content

Harnessing Nonlinear Optics for Microwave Signal Processing

  • Chapter
  • First Online:
All-Optical Signal Processing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 194))

  • 2847 Accesses

Abstract

Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics (MWP) can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we look at the potential of using nonlinear optical effects in a chip scale to enable RF signal processing with enhanced performance. We review a number of recent results in this field, with particular focus on the creation of frequency agile and high suppression microwave bandstop filters using on-chip stimulated Brillouin scattering (SBS). We also discuss the future prospect of nonlinear integrated MWP to enable a general purpose, programmable analog signal processor, as well as compact, high performance active microwave filters with enhanced energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.I. Ackerman, G.E. Betts, W.K. Burns, J.C. Campbell, C.H. Cox, N. Duan, J.L. Prince, M.D. Regan, H.V. Roussell, in Proceedings of the IEEE MTT-S International Microwave Symposium (IMS 2007) (Honolulu, HI, 2007) pp. 51–54

    Google Scholar 

  2. G. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, London, 2001)

    Google Scholar 

  3. A. Biberman, B.G. Lee, A.C. Turner-Foster, M.A. Foster, M. Lipson, A.L. Gaeta, K. Bergman, Wavelength multicasting in silicon photonic nanowires. Opt. Express 18(17), 18047–18055 (2010)

    Article  Google Scholar 

  4. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S.K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)

    Google Scholar 

  5. C.S Bres, S. Zlatanovic, A.O.J. Wiberg, J.R. Adleman, C.K. Huynh, E.W. Jacobs, J.M. Kvavle, S. Radic, Parametric photonic channelized rf receiver. IEEE Photonics Technol. Lett. 23(6), 344–346 (2011)

    Google Scholar 

  6. C.-S. Brès, S. Zlatanovic, A.O.J. Wiberg, S. Radic, Reconfigurable parametric channelized receiver for instantaneous spectral analysis. Opt. Express 19(4), 3531–3541 (2011)

    Google Scholar 

  7. M. Burla, L.R. Cortés, M. Li, X. Wang, L. Chrostowski, J. Azaña, Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express 21(21), 25120–25147 (2013)

    Google Scholar 

  8. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M.R. Khan, A. Leinse, M. Hoekman, R. Heideman, On-chip cmos compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19(22), 21475–21484 (2011)

    Google Scholar 

  9. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C.G. Poulton, S. Fan, S. Madden, B. Luther-Davies, B.J. Eggleton, Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. Opt. Express 20(17), 18836–18845 (2012)

    Article  ADS  Google Scholar 

  10. C. Caloz, S. Gupta, Q. Zhang, B. Nikfal, Analog signal processing: a possible alternative or complement to dominantly digital radio schemes. IEEE Microwave Mag. 14(6), 87–103 (2013)

    Google Scholar 

  11. J. Capmany, D. Novak, Microwave photonics combines two worlds. Nat. Photonics 1(6), 319–330 (2007)

    Article  ADS  Google Scholar 

  12. J. Capmany, B. Ortega, D. Pastor, S. Sales, Discrete-time optical processing of microwave signals. J. Lightwave Technol. 23(2), 702 (2005)

    Article  ADS  Google Scholar 

  13. L.R. Chen, J. Li, M. Spasojevic, R. Adams, Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters. Opt. Express 21(17), 19624–19633 (2013)

    Article  ADS  Google Scholar 

  14. S. Chin, L. Thévenaz, Tunable photonic delay lines in optical fibers. Laser Photonics Rev. 6(6), 724–738 (2012)

    Google Scholar 

  15. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, D. Dolfi, Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers. Opt. Express 18(21), 22599–22613 (2010)

    Article  Google Scholar 

  16. C. Cox, E. Ackerman, R. Helkey, G.E. Betts, Techniques and performance of intensity-modulation direct-detection analog optical links. IEEE Trans. Microw. Theory Tech. 45(8), 1375–1383 (1997)

    Google Scholar 

  17. C.H. Cox, Analog Optical Links: Theory and Practice (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  18. C.H. Cox, E.I. Ackerman, G.E. Betts, J.L. Prince, Limits on the performance of RF-over-fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006)

    Google Scholar 

  19. B.J. Eggleton, C.G. Poulton, R. Pant, Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 5(4), 536–587 (2013)

    Article  Google Scholar 

  20. B.J. Eggleton, T.D. Vo, R. Pant, J. Schr, M.D. Pelusi, D.Y. Choi, S.J. Madden, B. Luther-Davies, Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photonics Rev. 6(1), 97–114 (2012)

    Google Scholar 

  21. M.H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D.E. Leaird, A.M. Weiner, M. Qi, Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics 4(2), 117–122 (2010)

    Google Scholar 

  22. J. Kim, W.J. Sung, O. Eknoyan, C.K. Madsen, Linear photonic frequency discriminator on as2s3-ring-on-ti:linbo3 hybrid platform. Opt. Express 21(21), 24566–24573 (2013)

    Article  ADS  Google Scholar 

  23. A. Loayssa, F.J. Lahoz, Broad-band rf photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technol. Lett. 18(1), 208–210 (2006)

    Google Scholar 

  24. D. Marpaung, B. Morrison, R. Pant, D.Y. Choi, S. Madden, B. Luther-Davies, B.J. Eggleton, A tunable rf photonic notch filter with record 55 db suppression using sub-1 db on-chip Brillouin gain. in Frontiers in Optics 2013 Postdeadline. Opt. Soc. A., p. FW6B.9 (2013)

    Google Scholar 

  25. D. Marpaung, M. Pagani, B. Morrison, B.J. Eggleton, Nonlinear integrated microwave photonics. J. Lightwave Technol. 32(20), 3421–3427 (2014)

    Google Scholar 

  26. D. Marpaung, B. Morrison, R. Pant, B.J. Eggleton, Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt. Lett. 38(21), 4300–4303 (2013)

    Article  ADS  Google Scholar 

  27. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, B.J. Eggleton, Si3n4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21(20), 23286–23294 (2013)

    Article  ADS  Google Scholar 

  28. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, Integrated microwave photonics. Laser Photonics Rev. 7(4), 506–538 (2013)

    Google Scholar 

  29. J.D. McKinney, M. Godinez, V.J. Urick, S. Thaniyavarn, W. Charczenko, K.J. Williams, Sub-10-dB noise figure in a multiple-GHz analog optical link. IEEE Photonics Technol. Lett. 19(7), 465–467 (2007)

    Google Scholar 

  30. A. Meijerink, C.G.H. Roeloffzen, R. Meijerink, L. Zhuang, D.A.I. Marpaung, M.J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, W. van Etten, Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part i: design and performance analysis. J. Lightwave Technol. 28(1), 3–18 (2010)

    Article  Google Scholar 

  31. R.A. Minasian, Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54(2, Part 2), 832–846 (2006)

    Google Scholar 

  32. B. Morrison, D. Marpaung, R. Pant, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, B.J. Eggleton, Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering. Opt. Commun. 313, 85–89 (2014)

    Article  ADS  Google Scholar 

  33. D.J. Moss, R. Morandotti, A.L. Gaeta, M. Lipson, New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7(8), 597–607 (2014)

    Article  ADS  Google Scholar 

  34. W. Ng, A.A. Walston, G.L. Tangonan, J.J. Lee, I.L. Newberg, N. Bernstein, The first demonstration of an optically steered microwave phased array antenna using true-time-delay. IEEE Trans. Microw. Theory Tech. 9(9), 1124–1131 (1991)

    Google Scholar 

  35. Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005)

    Article  ADS  Google Scholar 

  36. M. Pagani, D. Marpaung, D.Y. Choi, S.J. Madden, B. Luther-Davies, B.J. Eggleton, On-chip wideband tunable rf photonic phase shifter based on stimulated Brillouin scattering. in Proc.OptoElectronics and Communications Conference (OECC), pp. 51–54 (2014)

    Google Scholar 

  37. M. Pagani, D. Marpaung, B. Morrison, B.J. Eggleton, Bandwidth tunable, high suppression rf photonic filter with improved insertion loss. in CLEO: 2014, p. STu2G.7. Opt. Soc. Am. (2014)

    Google Scholar 

  38. R. Pant, A. Byrnes, C.G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, B.J. Eggleton, Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. Opt. Lett. 37(5), 969–971 (2012)

    Article  ADS  Google Scholar 

  39. R. Pant, D. Marpaung, I.V. Kabakova, B. Morrison, C.G. Poulton, B.J. Eggleton, On-chip stimulated Brillouin scattering for microwave signal processing and generation. Laser Photonics Rev. 8(5), 653–666 (2014)

    Google Scholar 

  40. R. Pant, C.G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S.J. Madden, B.J. Eggleton, On-chip stimulated Brillouin scattering. Opt. Express 19(9), 8285–8290 (2011)

    Article  ADS  Google Scholar 

  41. M.S. Rasras, C.K. Madsen, M.A. Cappuzzo, E. Chen, L.T. Gomez, E.J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S.S. Patel, Integrated resonance-enhanced variable optical delay lines. IEEE Photonics Technol. Lett. 17(4), 834–836 (2005)

    Article  ADS  Google Scholar 

  42. C.G.H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R.G. Heideman, P.W.L. van Dijk, R.M. Oldenbeuving, D.A.I. Marpaung, M. Burla, K.J. Boller, Silicon nitride microwave photonic circuits. Opt. Express 21(19), 22937–22961 (2013)

    Google Scholar 

  43. J.E. Roman, L.T. Nichols, K.J. Wiliams, R.D. Esman, G.C. Tavik, M. Livingston, M.G. Parent, Fiber-optic remoting of an ultrahigh dynamic range radar. IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998)

    Google Scholar 

  44. A.J. Seeds, K.J. Williams, Microwave photonics. J. Lightwave Tech. 24(12), 4628–4641 (2006)

    Article  ADS  Google Scholar 

  45. A.J. Seeds, Microwave photonics. IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002)

    Google Scholar 

  46. H. Shin, W. Qiu, R. Jarecki, J.A. Cox, R.H. Olsson, A. Starbuck, Z. Wang, P.T. Rakich, Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4 (2013). doi:10.1038/ncomms2943

  47. K.Y. Song, M.G. Herráez, L. Thévenaz, Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express 13(1), 82–88 (2005)

    Article  ADS  Google Scholar 

  48. K. Tan, D. Marpaung, R. Pant, F. Gao, E. Li, J. Wang, D.-Y. Choi, S. Madden, B. Luther-Davies, J. Sun, B.J. Eggleton, Photonic-chip-based all-optical ultra-wideband pulse generation via xpm and birefringence in a chalcogenide waveguide. Opt. Express 21(2), 2003–2011 (2013)

    Article  ADS  Google Scholar 

  49. V.J. Urick, M.S. Rogge, F. Bucholtz, K.J. Williams, Wideband (0.045–6.25 GHz) 40 km analogue fibre-optic link with ultra-high (>40 dB) all-photonic gain. Electron. Lett. 42(9), 552–553 (2006)

    Article  Google Scholar 

  50. B. Vidal, J. Palaci, J. Capmany, Reconfigurable photonic microwave filter based on four-wave mixing. IEEE Photonics J. 4(3), 759–764 (2012)

    Article  Google Scholar 

  51. B. Vidal, M.A. Piqueras, J. Martí, Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. Opt. Lett. 32(1), 23–25 (2007)

    Article  ADS  Google Scholar 

  52. A.E. Willner, O.F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S.R. Nuccio, Optically efficient nonlinear signal processing. IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011)

    Google Scholar 

  53. J. Yao, Microwave photonics. IEEE Photonics Technol. Lett. 27(3), 314–335 (2009)

    Google Scholar 

  54. J. Yao, Microwave photonics arbitrary waveform generation. Nat. Photonics 4(2), 79–80 (2010)

    Google Scholar 

  55. J. Zhang, A.N. Hone, T.E. Darcie, Limitation due to signal-clipping in linearized microwave-photonic links. IEEE Photonics Technol. Lett. 19(14), 1033–1035 (2007)

    Google Scholar 

  56. W. Zhang, R.A Minasian, Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011)

    Google Scholar 

  57. W. Zhang, R.A Minasian, Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering. IEEE Photonics Technol. Lett. 24(14), 1182–1184 (2012)

    Google Scholar 

  58. L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, C. Roeloffzen. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photonics Rev. 7(6), 994–1002 (2013)

    Google Scholar 

  59. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen, Low-loss, high-index-contrast si3n4/sio2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express 19(23), 23162–23170 (2011)

    Article  ADS  Google Scholar 

  60. L. Zhuang, C.G.H. Roeloffzen, A. Meijerink, M. Burla, D.A.I. Marpaung, A. Leinse, M. Hoekman, R.G. Heideman, W. van Etten, Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part ii: Experimental prototype. J. Lightwave Technol. 28(1), 19–31 (2010)

    Google Scholar 

  61. H. Zmuda, R.A. Soref, P. Payson, S. Johns, E.N. Toughlian, Photonic beamformer for phased array antennas using a fiber grating prism. IEEE Photonics Technol. Lett. 9(2), 241–243 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Eggleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marpaung, D., Pant, R., Eggleton, B.J. (2015). Harnessing Nonlinear Optics for Microwave Signal Processing. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_14

Download citation

Publish with us

Policies and ethics