Bacteria and Fungi in Green Roof Ecosystems

  • Krista L. McGuireEmail author
  • Sara G. Payne
  • Giulia Orazi
  • Matthew I. Palmer
Part of the Ecological Studies book series (ECOLSTUD, volume 223)


Green roofs are one way by which cities are attempting to alleviate some of the problems associated with impervious surfaces in urban environments such as the urban heat island effect and stormwater runoff. In addition, green roofs provide a number of ecosystem services such as the provision of habitats for organisms residing in and migrating through the city that have only recently been studied and documented. Microorganisms such as fungi and bacteria have been found to be diverse and abundant components of green roof growing substrate and may contribute to some of the other benefits green roofs provide such as the removal of organic pollutants from precipitation. Here, we review several functional groups of microbes that may be useful for understanding in terms of green roof design and maintenance: mycorrhizal fungi, decomposer fungi, endophytes, N-fixing bacteria, and pathogens. These microbes interact with plant species and growing substrate in complex ways that require further investigation. The ecology of these microbial groups should also be considered, including their dispersal rates and how they respond to regional differences such as climate and seasonality. We highlight several research priorities for this area of work, which may ultimately facilitate greater functionality in green roof systems.


Soil Microbes Fungi Bacteria Urban parks Mycorrhizae 


  1. Akita M, Lehtonen MT, Koponen H, Marttinen EM, Valkonen JPT (2011) Infection of the Sunagoke moss panels with fungal pathogens hampers sustainable greening in urban environments. Sci Total Environ 409(17):3166–3173PubMedCrossRefGoogle Scholar
  2. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42CrossRefGoogle Scholar
  3. Azcon-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68(1–4):1–24CrossRefGoogle Scholar
  4. Baas-Becking LGM (1934) Geobiologie of Inleiding Tot de Milieukunde. Van Stockkum & Zoon, The HagueGoogle Scholar
  5. Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31(2):317–321CrossRefGoogle Scholar
  6. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436(7054):1157–1160PubMedCrossRefGoogle Scholar
  7. Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRefGoogle Scholar
  8. Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014) Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol 80(10):3103–3112PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46(3):229–236PubMedCrossRefGoogle Scholar
  10. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383 (Annual Reviews, Palo Alto)PubMedCrossRefGoogle Scholar
  11. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75(2):139–157CrossRefGoogle Scholar
  12. Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36(1):1–12PubMedCrossRefGoogle Scholar
  13. Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5(3):532–542PubMedCentralPubMedCrossRefGoogle Scholar
  14. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330(6001):192–196PubMedCrossRefGoogle Scholar
  15. Chen CF (2013) Performance evaluation and development strategies for green roofs in Taiwan: a review. Ecol Eng 52:51–58CrossRefGoogle Scholar
  16. Chillrud SN, Bopp RF, Simpson HJ, Ross JM, Shuster EL, Chaky DA, Walsh DC, Choy CC, Tolley LR, Yarme A (1999) Twentieth century atmospheric metal fluxes into Central Park Lake, New York City. Environ Sci Technol 33(5):657–662PubMedCentralPubMedCrossRefGoogle Scholar
  17. Clark SE, Steele KA, Spicher J, Siu CYS, Lalor MM, Pitt R, Kirby JT (2008) Roofing materials’ contributions to storm-water runoff pollution. J Irrig Drain Eng-ASCE 134(5):638–645CrossRefGoogle Scholar
  18. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127PubMedCrossRefGoogle Scholar
  19. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H-2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640PubMedCentralPubMedGoogle Scholar
  20. Cookson WR, Marschner P, Clark IM, Milton N, Smirk MN, Murphy DV, Osman M, Stockdale EA, Hirsch PR (2006) The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Aust J Soil Res 44(4):453–465CrossRefGoogle Scholar
  21. Curtis TP, Head IM, Lunn M, Woodcock S, Schloss PD, Sloan WT (2006) What is the extent of prokaryotic diversity? Philos Trans R Soc Lond B Biol Sci 361(1475):2023–2037PubMedCentralPubMedCrossRefGoogle Scholar
  22. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173PubMedCrossRefGoogle Scholar
  23. de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811PubMedCrossRefGoogle Scholar
  24. Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29(9–10):1309–1320CrossRefGoogle Scholar
  25. Dickie IA, Fukami T, Wilkie JP, Allen RB, Buchanan PK (2012) Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol Lett 15(2):133–141PubMedCrossRefGoogle Scholar
  26. Drew EA, Murray RS, Smith SE, Jakobsen I (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251(1):105–114CrossRefGoogle Scholar
  27. Duchicela J, Vogelsang KM, Schultz PA, Kaonongbua W, Middleton EL, Bever JD (2012) Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytol 196(1):212–222PubMedCrossRefGoogle Scholar
  28. Fields S (2004) Global nitrogen—cycling out of control. Environ Health Perspect 112(10):A556–A563PubMedCentralPubMedCrossRefGoogle Scholar
  29. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Nat Acad Sci U S A 103(3):626–631CrossRefGoogle Scholar
  30. Fierer N, Grandy AS, Six J, Paul EA (2009) Searching for unifying principles in soil ecology. Soil Biol Biochem 41(11):2249–2256CrossRefGoogle Scholar
  31. Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91CrossRefGoogle Scholar
  32. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. In: Futuyma DJ, Shaffer HB, Simberloff D (eds) Annual Review of Ecology, Evolution, and Systematics. Annu Rev Ecol Evol Syst 42:23–46 (Annual Reviews, Palo Alto)Google Scholar
  33. Gaffin SR, Khanbilvardi R, Rosenzweig C (2009) Development of a green roof environmental monitoring and meteorological network in New York City. Sensors 9(4):2647–2660PubMedCentralPubMedCrossRefGoogle Scholar
  34. Garbaye J (1994) Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210CrossRefGoogle Scholar
  35. Gomez S, Ferrieri RA, Schueller M, Orians CM (2010) Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol 188(3):835–844PubMedCrossRefGoogle Scholar
  36. Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 4:355PubMedCentralPubMedCrossRefGoogle Scholar
  37. Gregoire BG, Clausen JC (2011) Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol Eng 37(6):963–969CrossRefGoogle Scholar
  38. Hanif MA, Bhatti HN, Ali MA, Asgher M, Bhatti IA (2010) Heavy metals tolerance and biosorption potential of white rot fungi. Asian J Chem 22(1):335–345Google Scholar
  39. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432CrossRefGoogle Scholar
  40. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90(2):371–384CrossRefGoogle Scholar
  41. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vila M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15(1):1–7CrossRefGoogle Scholar
  42. Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98PubMedCrossRefGoogle Scholar
  43. John J, Lundholm J, Kernaghan G (2014) Colonization of green roof plants by mycorrhizal and root endophytic fungi. Ecol Eng 71:651–659CrossRefGoogle Scholar
  44. Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186(2):496–513PubMedCrossRefGoogle Scholar
  45. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13(12):1459–1474CrossRefGoogle Scholar
  46. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43(11):2294–2303CrossRefGoogle Scholar
  47. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70PubMedCrossRefGoogle Scholar
  48. Kraiser T, Gras DE, Gutierrez AG, Gonzalez B, Gutierrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62(4):1455–1466PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8(5):468–479PubMedCrossRefGoogle Scholar
  50. Kristin A, Miranda H (2013) The root microbiota-a fingerprint in the soil? Plant Soil 370(1–2):671–686CrossRefGoogle Scholar
  51. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120PubMedCentralPubMedCrossRefGoogle Scholar
  52. Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92(6):1292–1302PubMedCrossRefGoogle Scholar
  53. Liu JW, Lovisolo C, Schubert A, Cardinale F (2013) Signaling role of Strigolactones at the interface between plants, (micro)organisms, and a changing environment. J of Plant Int 8(1):17–33PubMedCrossRefGoogle Scholar
  54. Lundholm J, MacIvor JS, MacDougall Z, Ranalli M (2010) Plant species and functional group combinations affect green roof ecosystem functions. PLoS One 5(3):e9677PubMedCentralPubMedCrossRefGoogle Scholar
  55. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93(4):930–938PubMedCrossRefGoogle Scholar
  56. Matsumura E, Fukuda K (2013) A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fungal Biol 117(3):191–201PubMedCrossRefGoogle Scholar
  57. McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, Gedallovich SM, Discenza J, Rangamannar R, Koshner JA, Massmann AL, Orazi G, Essene A, Leff JW, Fierer N (2013) Digging the New York City skyline: soil fungal communities in green roofs and city parks. PLoS One 8(3):e58020PubMedCentralPubMedCrossRefGoogle Scholar
  58. Mishra PK, Bisht SC, Jeevanandan K, Kumar S, Bisht JK, Bhatt JC (2014) Synergistic effect of inoculating plant growth-promoting Pseudomonas spp. and Rhizobium leguminosarum-FB1 on growth and nutrient uptake of rajmash (Phaseolus vulgaris L.). Arch Agron Soil Sci 60(6):799–815CrossRefGoogle Scholar
  59. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448PubMedCrossRefGoogle Scholar
  60. Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V (2013) The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16(3):628–642CrossRefGoogle Scholar
  61. Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Kohler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57(10):823–833CrossRefGoogle Scholar
  62. Opik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Bot-Bot 92(2):135–147CrossRefGoogle Scholar
  63. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740PubMedCrossRefGoogle Scholar
  64. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799PubMedCrossRefGoogle Scholar
  65. Prabha C, Maheshwari DK, Bajpai VK (2013) Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacogn Mag 9(36):57–65CrossRefGoogle Scholar
  66. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289(5486):1920–1921PubMedCrossRefGoogle Scholar
  67. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404–416PubMedCrossRefGoogle Scholar
  68. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330PubMedCrossRefGoogle Scholar
  69. Rumble H, Gange AC (2013) Soil microarthropod community dynamics in extensive green roofs. Ecol Eng 57:197–204CrossRefGoogle Scholar
  70. Saikia SP, Goswami A, Mudoi KD (2014) Effect of 2, 4-D treatment and Azospirillum inoculation on growth of Cymbopogon winterianus. Afr J Microbiol Res 8:955–960CrossRefGoogle Scholar
  71. Sanchez-Pardo B, Zornoza P (2014) Mitigation of Cu stress by legume-Rhizobium symbiosis in white lupin and soybean plants. Ecotoxicol Environ Safe 102:1–5CrossRefGoogle Scholar
  72. Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92(2):296–303PubMedCrossRefGoogle Scholar
  73. Schultz JC, Appel HM, Ferrieri AP, Arnold TM (2013) Flexible resource allocation during plant defense responses. Front Plant Sci 4:324PubMedCentralPubMedCrossRefGoogle Scholar
  74. Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  75. Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79(3):1029–1038CrossRefGoogle Scholar
  76. Shipton PJ (1977) Monoculture and soilborne plant pathogens. Annu Rev Phytopathol 15:387–407CrossRefGoogle Scholar
  77. Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569CrossRefGoogle Scholar
  78. Smith JE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San DiegoGoogle Scholar
  79. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5(4):169–195CrossRefGoogle Scholar
  80. Strong DT, Sale PWG, Helyar KR (1999) The influence of the soil matrix on nitrogen mineralisation and nitrification. IV. texture. Austr J Soil Res 37(2):329–344CrossRefGoogle Scholar
  81. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, OxfordGoogle Scholar
  82. Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21(12):641–651PubMedCrossRefGoogle Scholar
  83. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209PubMedCentralPubMedCrossRefGoogle Scholar
  84. Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ, Ton J (2009) Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytol 183(2):419–431PubMedCrossRefGoogle Scholar
  85. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72CrossRefGoogle Scholar
  86. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310PubMedCrossRefGoogle Scholar
  87. Vullo DL, Ceretti HM, Daniel MA, Ramirez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99(13):5574–5581PubMedCrossRefGoogle Scholar
  88. Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40(3):803–813CrossRefGoogle Scholar
  89. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363PubMedCrossRefGoogle Scholar
  90. Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc 67(3):321–358CrossRefGoogle Scholar
  91. Wardle DA, Bardgett RD, Klironomos JN, Setala H (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633PubMedCrossRefGoogle Scholar
  92. Waring BG, Averill C, Hawkes CV (2013) Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol Lett 16(7):887–894PubMedCrossRefGoogle Scholar
  93. Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  94. Xu HJ, Li S, Su JQ, Nie SA, Gibson V, Li H, Zhu YG (2014) Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiol Ecol 87(1):182–192PubMedCrossRefGoogle Scholar
  95. Yang J, Yu Q, Gong P (2008) Quantifying air pollution removal by green roofs in Chicago. Atmos Environ 42(31):7266–7273CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Krista L. McGuire
    • 1
    Email author
  • Sara G. Payne
    • 2
  • Giulia Orazi
    • 3
  • Matthew I. Palmer
    • 4
  1. 1.1305 Altschul Hall, Barnard CollegeColumbia UniversityNew YorkUSA
  2. 2.NYCUSA
  3. 3.RyeUSA
  4. 4.Columbia University MC 5557NYCUSA

Personalised recommendations