Skip to main content

Bacteria and Fungi in Green Roof Ecosystems

  • Chapter
  • First Online:
Book cover Green Roof Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 223))

Abstract

Green roofs are one way by which cities are attempting to alleviate some of the problems associated with impervious surfaces in urban environments such as the urban heat island effect and stormwater runoff. In addition, green roofs provide a number of ecosystem services such as the provision of habitats for organisms residing in and migrating through the city that have only recently been studied and documented. Microorganisms such as fungi and bacteria have been found to be diverse and abundant components of green roof growing substrate and may contribute to some of the other benefits green roofs provide such as the removal of organic pollutants from precipitation. Here, we review several functional groups of microbes that may be useful for understanding in terms of green roof design and maintenance: mycorrhizal fungi, decomposer fungi, endophytes, N-fixing bacteria, and pathogens. These microbes interact with plant species and growing substrate in complex ways that require further investigation. The ecology of these microbial groups should also be considered, including their dispersal rates and how they respond to regional differences such as climate and seasonality. We highlight several research priorities for this area of work, which may ultimately facilitate greater functionality in green roof systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akita M, Lehtonen MT, Koponen H, Marttinen EM, Valkonen JPT (2011) Infection of the Sunagoke moss panels with fungal pathogens hampers sustainable greening in urban environments. Sci Total Environ 409(17):3166–3173

    Article  CAS  PubMed  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42

    Article  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68(1–4):1–24

    Article  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of Inleiding Tot de Milieukunde. Van Stockkum & Zoon, The Hague

    Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31(2):317–321

    Article  CAS  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436(7054):1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014) Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol 80(10):3103–3112

    Article  PubMed Central  PubMed  Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet-Marel JC (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46(3):229–236

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383 (Annual Reviews, Palo Alto)

    Article  CAS  PubMed  Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75(2):139–157

    Article  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5(3):532–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330(6001):192–196

    Article  CAS  PubMed  Google Scholar 

  • Chen CF (2013) Performance evaluation and development strategies for green roofs in Taiwan: a review. Ecol Eng 52:51–58

    Article  Google Scholar 

  • Chillrud SN, Bopp RF, Simpson HJ, Ross JM, Shuster EL, Chaky DA, Walsh DC, Choy CC, Tolley LR, Yarme A (1999) Twentieth century atmospheric metal fluxes into Central Park Lake, New York City. Environ Sci Technol 33(5):657–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark SE, Steele KA, Spicher J, Siu CYS, Lalor MM, Pitt R, Kirby JT (2008) Roofing materials’ contributions to storm-water runoff pollution. J Irrig Drain Eng-ASCE 134(5):638–645

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H-2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cookson WR, Marschner P, Clark IM, Milton N, Smirk MN, Murphy DV, Osman M, Stockdale EA, Hirsch PR (2006) The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Aust J Soil Res 44(4):453–465

    Article  CAS  Google Scholar 

  • Curtis TP, Head IM, Lunn M, Woodcock S, Schloss PD, Sloan WT (2006) What is the extent of prokaryotic diversity? Philos Trans R Soc Lond B Biol Sci 361(1475):2023–2037

    Article  PubMed Central  PubMed  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Article  CAS  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    Article  PubMed  Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29(9–10):1309–1320

    Article  CAS  Google Scholar 

  • Dickie IA, Fukami T, Wilkie JP, Allen RB, Buchanan PK (2012) Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol Lett 15(2):133–141

    Article  PubMed  Google Scholar 

  • Drew EA, Murray RS, Smith SE, Jakobsen I (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251(1):105–114

    Article  CAS  Google Scholar 

  • Duchicela J, Vogelsang KM, Schultz PA, Kaonongbua W, Middleton EL, Bever JD (2012) Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytol 196(1):212–222

    Article  PubMed  Google Scholar 

  • Fields S (2004) Global nitrogen—cycling out of control. Environ Health Perspect 112(10):A556–A563

    Article  PubMed Central  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Nat Acad Sci U S A 103(3):626–631

    Article  CAS  Google Scholar 

  • Fierer N, Grandy AS, Six J, Paul EA (2009) Searching for unifying principles in soil ecology. Soil Biol Biochem 41(11):2249–2256

    Article  CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. In: Futuyma DJ, Shaffer HB, Simberloff D (eds) Annual Review of Ecology, Evolution, and Systematics. Annu Rev Ecol Evol Syst 42:23–46 (Annual Reviews, Palo Alto)

    Google Scholar 

  • Gaffin SR, Khanbilvardi R, Rosenzweig C (2009) Development of a green roof environmental monitoring and meteorological network in New York City. Sensors 9(4):2647–2660

    Article  PubMed Central  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210

    Article  Google Scholar 

  • Gomez S, Ferrieri RA, Schueller M, Orians CM (2010) Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol 188(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 4:355

    Article  PubMed Central  PubMed  Google Scholar 

  • Gregoire BG, Clausen JC (2011) Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol Eng 37(6):963–969

    Article  Google Scholar 

  • Hanif MA, Bhatti HN, Ali MA, Asgher M, Bhatti IA (2010) Heavy metals tolerance and biosorption potential of white rot fungi. Asian J Chem 22(1):335–345

    CAS  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432

    Article  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90(2):371–384

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vila M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15(1):1–7

    Article  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • John J, Lundholm J, Kernaghan G (2014) Colonization of green roof plants by mycorrhizal and root endophytic fungi. Ecol Eng 71:651–659

    Article  Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186(2):496–513

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13(12):1459–1474

    Article  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43(11):2294–2303

    Article  CAS  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70

    Article  CAS  PubMed  Google Scholar 

  • Kraiser T, Gras DE, Gutierrez AG, Gonzalez B, Gutierrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62(4):1455–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8(5):468–479

    Article  PubMed  Google Scholar 

  • Kristin A, Miranda H (2013) The root microbiota-a fingerprint in the soil? Plant Soil 370(1–2):671–686

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92(6):1292–1302

    Article  PubMed  Google Scholar 

  • Liu JW, Lovisolo C, Schubert A, Cardinale F (2013) Signaling role of Strigolactones at the interface between plants, (micro)organisms, and a changing environment. J of Plant Int 8(1):17–33

    Article  PubMed  Google Scholar 

  • Lundholm J, MacIvor JS, MacDougall Z, Ranalli M (2010) Plant species and functional group combinations affect green roof ecosystem functions. PLoS One 5(3):e9677

    Article  PubMed Central  PubMed  Google Scholar 

  • Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93(4):930–938

    Article  PubMed  Google Scholar 

  • Matsumura E, Fukuda K (2013) A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fungal Biol 117(3):191–201

    Article  PubMed  Google Scholar 

  • McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, Gedallovich SM, Discenza J, Rangamannar R, Koshner JA, Massmann AL, Orazi G, Essene A, Leff JW, Fierer N (2013) Digging the New York City skyline: soil fungal communities in green roofs and city parks. PLoS One 8(3):e58020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra PK, Bisht SC, Jeevanandan K, Kumar S, Bisht JK, Bhatt JC (2014) Synergistic effect of inoculating plant growth-promoting Pseudomonas spp. and Rhizobium leguminosarum-FB1 on growth and nutrient uptake of rajmash (Phaseolus vulgaris L.). Arch Agron Soil Sci 60(6):799–815

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V (2013) The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16(3):628–642

    Article  Google Scholar 

  • Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Kohler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57(10):823–833

    Article  Google Scholar 

  • Opik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Bot-Bot 92(2):135–147

    Article  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Prabha C, Maheshwari DK, Bajpai VK (2013) Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacogn Mag 9(36):57–65

    Article  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289(5486):1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Rumble H, Gange AC (2013) Soil microarthropod community dynamics in extensive green roofs. Ecol Eng 57:197–204

    Article  Google Scholar 

  • Saikia SP, Goswami A, Mudoi KD (2014) Effect of 2, 4-D treatment and Azospirillum inoculation on growth of Cymbopogon winterianus. Afr J Microbiol Res 8:955–960

    Article  Google Scholar 

  • Sanchez-Pardo B, Zornoza P (2014) Mitigation of Cu stress by legume-Rhizobium symbiosis in white lupin and soybean plants. Ecotoxicol Environ Safe 102:1–5

    Article  CAS  Google Scholar 

  • Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92(2):296–303

    Article  PubMed  Google Scholar 

  • Schultz JC, Appel HM, Ferrieri AP, Arnold TM (2013) Flexible resource allocation during plant defense responses. Front Plant Sci 4:324

    Article  PubMed Central  PubMed  Google Scholar 

  • Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79(3):1029–1038

    Article  Google Scholar 

  • Shipton PJ (1977) Monoculture and soilborne plant pathogens. Annu Rev Phytopathol 15:387–407

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    Article  CAS  Google Scholar 

  • Smith JE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5(4):169–195

    Article  CAS  Google Scholar 

  • Strong DT, Sale PWG, Helyar KR (1999) The influence of the soil matrix on nitrogen mineralisation and nitrification. IV. texture. Austr J Soil Res 37(2):329–344

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21(12):641–651

    Article  CAS  PubMed  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209

    Article  PubMed Central  PubMed  Google Scholar 

  • Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ, Ton J (2009) Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytol 183(2):419–431

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  PubMed  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramirez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99(13):5574–5581

    Article  CAS  PubMed  Google Scholar 

  • Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA (2008) Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol Biochem 40(3):803–813

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc 67(3):321–358

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Waring BG, Averill C, Hawkes CV (2013) Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol Lett 16(7):887–894

    Article  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Xu HJ, Li S, Su JQ, Nie SA, Gibson V, Li H, Zhu YG (2014) Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiol Ecol 87(1):182–192

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yu Q, Gong P (2008) Quantifying air pollution removal by green roofs in Chicago. Atmos Environ 42(31):7266–7273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista L. McGuire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McGuire, K., Payne, S., Orazi, G., Palmer, M. (2015). Bacteria and Fungi in Green Roof Ecosystems. In: Sutton, R. (eds) Green Roof Ecosystems. Ecological Studies, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-14983-7_7

Download citation

Publish with us

Policies and ethics