Skip to main content

Monitoring Abiotic Inputs and Outputs

  • Chapter
  • First Online:
Green Roof Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 223))

Abstract

Green roof monitoring is critical to understand and improve the design, implementation, and management of green roof ecosystems. Creating resilient, less resource intensive living roofs fitting their larger eco-regional context, specific local setting, and unique project objectives means understanding inputs and outputs. This chapter addresses monitoring abiotic inputs and outputs related to green roof hydrology (precipitation and irrigation, storage, outflow, and evapotranspiration), water quality, energy fluxes, temperatures, meteorological conditions (wind), and gas/carbon exchange. This chapter presents monitoring approaches and equipment needs from literature and researcher interviews detailing several relevant examples. Important design, educational, and management opportunities relating to effective monitoring programs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsup S, Ebbs S, Battaglia L, Retzlaff W (2013) Green roof systems as sources or sinks influencing heavy metal concentrations in runoff. J Environ Eng-ASCE 139(4):502–508

    Article  CAS  Google Scholar 

  • Al-Yaseri I, Morgan S, Retzlaff W (2013) Using turbidity to determine total suspended solids in stormwater runoff from green roofs. J Environ Eng-ASCE 139(6):822–828

    Article  CAS  Google Scholar 

  • American Society of Landscape Architects (ASLA) (2013) Award of excellence: green roof innovation testing (GRIT) laboratory. ASLA professional awards project narrative.http://www.asla.org/2013awards/394.html. Accessed 3 April 2015

  • Arvidson AR (2012) Greening the landscape. WW Norton, New York

    Google Scholar 

  • Beattie D, Berghage R, (2004) Green roof media characteristics: the basics. In: Proc. of 2nd North American green roof conference: greening rooftops for sustainable communities, Portland, Oregon, 2–4 June 2004

    Google Scholar 

  • Becker D, Wang D (2011) Green roof heat transfer and thermal performance analysis. Unpublished Carnegie Mellon University Report, Pittsburgh, PA

    Google Scholar 

  • Berghage R, Jarrett A, Beattie D et al (2007) Quantifying evaporation and transpirational water losses from green roofs and green roof media capacity for neutralizing acid rain. Pennsylvania State University, State College, Pennsylvania

    Google Scholar 

  • Berghage R, Beattie D, Jarrett A, Thuring C, Razaei F (2009) Green roofs for stormwater runoff control. T. P. S. University. USEPA, National Risk Mgmt Research Lab, Water Supply & Water Resources Division. EPA/600/R-09/026

    Google Scholar 

  • Berndtsson J (2010) Green roof performance towards management of runoff water quantity and quality: a review. Ecol Eng 36(4):351–360

    Article  Google Scholar 

  • Blank L, Vasl A, Levy S, Grant G, Kadas G, Dafni A, Blaustein L (2013) Directions in green roof research: a bibliometric study. Build Environ 66:23–28

    Article  Google Scholar 

  • Blanusa T, Vaz Monteiro M, Fantozzi F, Vysini E, Li Y, Cameron R (2013) Alternatives to Sedum on green roofs: can broad leaf perennial plants offer better ‘cooling service’? Build Environ 59:99–106

    Article  Google Scholar 

  • Bliss DJ, Neufeld RD, Ries RJ (2009) Stormwater runoff mitigation using a green roof. Environ Eng Sci 26(2):407–417

    Article  CAS  Google Scholar 

  • Butler C, Orians CM (2011) Sedum cools soil and can improve neighboring plant performance during water deficit on a green roof. Ecol Eng 37(11):1796–1803

    Article  Google Scholar 

  • Byrne LB, Grewal P (2008) Introduction to ecological landscaping: a holistic description and framework to guide the study and management of urban landscape parcels. Cities Environ 1(2):article3, p 1–19

    Google Scholar 

  • Cao J, Tamura Y, Yoshida A (2013) Wind tunnel investigation of wind loads on rooftop model modules for green roofing systems. J Wind Eng Ind Aerodyn 118:20–34

    Article  Google Scholar 

  • Carson TB, Marasco DE, Culligan PJ, McGillis WR (2013) Hydrological performance of extensive green roofs in New York city: observations and multi-year modeling of three full-scale systems. Environ Res Lett 8(2):24–36

    Article  Google Scholar 

  • Carter TL, Rasmussen TC (2006) Hydrologic behavior of vegetated roofs. J Am Water Resour Assoc 42(5):1261–1274

    Article  Google Scholar 

  • Chan ALS, Chow TT (2013) Evaluation of overall thermal transfer value (ottv) for commercial buildings constructed with green roof. Appl Energy 107:10–24

    Article  Google Scholar 

  • Charlesworth SM, Perales-Momparler S, Lashford C, Warwick F (2013) The sustainable management of surface water at the building scale: preliminary results of case studies in the UK and Spain. J Water Supply: Research & Technology-AQUA 0003–7214) 62(8):534–544

    Google Scholar 

  • Clark MJ, Zheng Y (2013) Plant nutrition requirements for an installed sedum-vegetated green roof module system: effects of fertilizer rate and type on plant growth and leachate nutrient content. HortScience 48(9):1173–1180

    CAS  Google Scholar 

  • Coutts A, Daly E, Beringer J, Tapper N (2013) Assessing practical measures to reduce urban heat: green and cool roofs. Build Environ 70:266–276

    Article  Google Scholar 

  • Culligan P, Carson T, Gaffin S, Gibson R, Hakimdavar R, Hsueh D, Hunter N, Marasco D, McGillis W, O’Conner TP (2014) Evaluation of green roof water quantity and quality performance in an urban climate. USEPA National Risk Management Research Laboratory, Office of Research & Development, EPA/600/R-14/180

    Article  Google Scholar 

  • Darkwa J, Kokogiannakis G, Suba G (2013) Effectiveness of an intensive green roof in a sub-tropical region. Build Serv Eng Res Technol 34(4):417–432

    Article  Google Scholar 

  • De Cuyper K, Dinne K, Van De Vel L (2004) Rainwater discharge from green roofs. In Proc. of 30th CIB W062 International Symposium on Water Supply and Drainage for Buildings, Paris, France. 16–17 September 2004

    Google Scholar 

  • De Nardo JC, Jarrett AR, Manbeck HB, Beattie DJ, Berghage RD (2005) Stormwater mitigation and surface temperature reduction by green roofs. Trans ASAE 48:1491–1496

    Article  Google Scholar 

  • Dietz M (2007) Low impact development practices: a review of current research and recommendations for future directions. Water Air Soil Pollut 186(1–4):351–363

    Article  CAS  Google Scholar 

  • DiGiovanni K (2013) Evapotranspiration from urban green spaces in a northeast United States’ city. Dissertation, Drexel University

    Google Scholar 

  • DiGiovanni K, Gaffin S, Montalto F (2010) Green roof hydrology: results from a small-scale lysimeter setup (Bronx, NY). Low Impact Dev 2010:1328–1341. doi:10.1061/41099(367)114

    Google Scholar 

  • DiGiovanni K, Gaffin S, Montalto F, Rosenzweig C (2011) The applicability of classical predictive equations for the estimation of evapotranspiration from urban green spaces: green roof results. World Environmental and Water Resources Congress, Palm Springs, California. 22–26 May 2011

    Google Scholar 

  • DiGiovanni K, Montalto F, Gaffin S, Rosenzweig C (2013) Applicability of classical predictive equations for the estimation of evapotranspiration from urban green spaces: green roof results. J Hydrol Eng 18(1):99–107. (Figure 4 with permission from ASCE)

    Article  Google Scholar 

  • Dunnett N, Nagase A, Booth R, Grime J (2008) Influence of vegetation composition on runoff in two simulated green roof experiments. Urb Ecosyst 11:385–398

    Article  Google Scholar 

  • Dvorak B, Volder A (2013) Rooftop temperature reduction from unirrigated modular green roofs in south-central Texas. Urb For Urb Gr 12(1):28–35

    Article  Google Scholar 

  • Eumorfopoulou E, Aravantinos D (1998) The contribution of a planted roof to the thermal protection of buildings in Greece. Energy Build 27(1):29–36

    Article  Google Scholar 

  • Fassman E, Simcock R (2012) Moisture measurements as performance criteria for extensive living roof substrates. J Environ Eng 138(8):841–851

    Google Scholar 

  • Fassman-Beck E, Voyde E, Simcock R, Hong YS (2013) Four living roofs in three locations: does configuration affect runoff mitigation? J Hydrol 490:11–20

    Article  Google Scholar 

  • Feller M, Traver R, and Wadzuk B (2010) Estimation of green roof evapotranspiration: experimental results. In Proc. of 2010 International Low Impact Development Conference: Redefining Water in the City, San Francisco, CA. 11-14 April 2010. doi: 10.1061/41099(367)8. http://ascelibrary.org/doi/book/10.1061/9780784410998

    Article  Google Scholar 

  • Felson AJ, Pavao-Zuckerman M, Carter T, Montalto F, Shuster B, Springer N, Stander E, Starry O (2014) Mapping the design process for urban ecology researchers. BioScience 63(11):854–865

    Google Scholar 

  • Fioretti R, Palla A, Lanza LG, Principi P (2010) Green roof energy and water related performance in the Mediterranean climate. Build Environ 45(8):1890–1904

    Article  Google Scholar 

  • Friedrich CR (2005) Principles for selecting the proper components for a green roof growing media. pp 262–273. In: Proc. of 3rd North American Green Roof Conference, Washington, DC. 4–6 May 2005

    Google Scholar 

  • Gaffin SR, Khanbilvardi R, Rosenzweig C (2009) Development of a green roof environmental monitoring and meteorological network in New York City. Sensors 9(4):2647–2660

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaffin SR, Rosenzweig C, Khanbilvardi R et al (2011) Stormwater retention for a modular green roof using energy balance data. Columbia University Press, New York

    Google Scholar 

  • Gaumont-Guay D, Halsall R (2013) The carbon balance of a Pacific west coast green roof. In: Proc. of Cities Alive: 11th Annual Green Roof and Wall Conference. San Francisco. 23–26 Oct 2013

    Google Scholar 

  • Getter KL, Rowe DB (2009) Substrate depth influences sedum plant community on a green roof. HortScience 44(2):401–407

    Google Scholar 

  • Getter KL, Rowe DB, Robertson GP, Cregg BM, Andresen JA (2009) Carbon sequestration potential of extensive green roofs. Environ Sci Technol 43(19):7564–7570

    Article  CAS  PubMed  Google Scholar 

  • Getter KL, Rowe DB, Andresen JA, Wichman IS (2011) Seasonal heat flux properties of an extensive green roof in a Midwestern U.S. climate. Energy Build 43:3548–3557

    Article  Google Scholar 

  • Glass CC, Johnson PA (2009) Monitoring of a new green roof for water quality and quantity. In: Proc. of Greening Rooftops for Sustainable Communities Conference, Awards & Trade Show. Baltimore, MD. 30 April to 2 May 2008

    Google Scholar 

  • Gnecco I, Palla A, Lanza LG, LaBarbera P (2013) A green roof experimental site in the Mediterranean climate: the storm water quality issue. Water Sci Technol 68(6):1419–1424

    Article  CAS  PubMed  Google Scholar 

  • Gregoire B, Clausen J (2011) Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol Eng 37(6):963–969

    Article  Google Scholar 

  • Griffin W (2013) The effects of green roof substrate composition on plant growth and storm water retention of Mid-Atlantic green roofs. Diss. U of Maryland

    Google Scholar 

  • Hanks R (1992) Applied soil physics: soil water and temperature applications, 2nd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Havens KE, Aumen NG (2000) Hypothesis-driven experimental research is necessary for natural resource management. Environ Manag 25(1):1–7

    Article  Google Scholar 

  • Hendricks J, Calkins M (2006) The adoption of an innovation: barriers to use of green roofs experienced by Midwest architects and building owners. J Gr Build 1:148–168

    Article  Google Scholar 

  • Hill J, Perotto M, Yoon C (2015) Processes of quantifying the hydrological performance of extensive green roofs. In Proc. of 2015 RCI Convention & Trade Show, San Antonio, TX. 5–10 March 2015

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manuals and reports on engineering practice No. 70. Am. Society of Civil Engineers, NY

    Google Scholar 

  • Jim CY (2012) Effect of vegetation biomass structure on thermal performance of tropical green roof. Ecol Eng 8(2):173–187

    Google Scholar 

  • Jim CY, He HM (2010) Coupling heat flux dynamics with meteorological conditions in the green roof ecosystem. Ecol Eng 36(8):1052–1063

    Article  Google Scholar 

  • Karban R, Hunzinger M (2006) How to do ecology: a concise handbook. Princeton University Press, New Jersey

    Google Scholar 

  • Kim S-C, Park B-J (2013) Assessment of temperature reduction and heat budget of extensive modular green roof system. Korean J Hortic Sci Technol 31(4):503–511

    Article  Google Scholar 

  • Klett JE, Bousselot JM, Koski RD, O’Connor TP (2012) Evaluation of green roof plants and materials for semi-arid climates. USEPA National Risk Management Research Laboratory, Office of Research & Development, USEPA/600/R-12-592

    Google Scholar 

  • Köhler M, Poll PH (2010) Long-term performance of selected old Berlin greenroofs in comparison to younger extensive greenroofs in Berlin. Ecol Eng 36:722–729

    Article  Google Scholar 

  • Kurtz T et al (2010) Stormwater management facilities monitoring report: December 2010. Bure

    Google Scholar 

  • au of Environmental Services, Sustainable Stormwater Mgmt Program, City of Portland, OR: p 172

    Google Scholar 

  • Laminack KD, Dvorak BD, Volder A (2014) Substrate loss is minimal in vegetated and un-vegetated extensive roof modules over a 14-month period. J Living Archit 1(4):1–13

    Google Scholar 

  • Lea-Cox JD (2012) Using wireless sensor networks for precision irrigation scheduling. In: Kumar M (ed) Problems, perspectives and challenges of agricultural water management. InTech Press, Rijeka, pp 233–258

    Google Scholar 

  • MacIvor JS, Margolis L, Puncher CL, Matthews BJC, (2013) Decoupling factors affecting plant diversity and cover on extensive green roofs. J Environ Manag 130:297–305

    Article  Google Scholar 

  • Marasco DE, Hunter BN, Culligan PJ, Gaffin SR, McGillis WR (2014) Quantifying evapotranspiration from urban green roofs: a comparison of chamber measurements with commonly used predictive methods. Environ Sci Technol Lett 48(17):10273–10281

    Article  Google Scholar 

  • Moody S, Sailor DJ (2013) Development and application of a building energy performance metric for green roof systems. Energy Build 60:262–269

    Article  Google Scholar 

  • Mooney-Bullock R, Buffam I, Bolan M (2012) Urban learning laboratory features four educational, monitored green roofs. In: Proc. of Cities Alive: 10th Annual Green Roof & Wall Conference. Chicago. 17–20 October 2012

    Google Scholar 

  • Morgan S, Celik S, Retzlaff W (2012) Green roof stormwater runoff quantity and quality. J Environ Eng 139(4):471–478

    Article  Google Scholar 

  • Nagase A, Dunnett N (2013) Establishment of an annual meadow on extensive green roofs in the UK. Landsc Urb Plan 112:50–62

    Article  Google Scholar 

  • Nagengast A (2013) Energy performance impacts from competing low-slope roofing choices and photovoltaic technologies. Diss. Carnegie Mellon University

    Google Scholar 

  • Neufeld RD, Monnell J, Ries RJ (2009) Monitoring protocol and data collection: comparison of the runoff water quantity, quality and thermal performances of two green roof technologies: thin vs. thick. Sch. of Engineering, U Pittsburgh

    Google Scholar 

  • Nouri H, Beecham S, Kazemi F, Hassanli AM (2012) A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urb Water 10(4):247–259

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  Google Scholar 

  • Oke TR (1978) Boundary layer climates. Methuen Company, New York

    Book  Google Scholar 

  • Olivieri F, Di Perna C, D’Orazio M, Olivieri L, Neila J (2013) Experimental measurements and numerical model for the summer performance assessment of extensive green roofs in a Mediterranean coastal climate. Energy Build 63:1–14

    Article  Google Scholar 

  • Omar MS, Quinn MM, Buchholz B, Geiser K (2013) Are green building features safe for preventive maintenance workers? examining the evidence. Am J Ind Med 56:410–423

    Article  PubMed  Google Scholar 

  • Onmura S, Matsumoto M, Hokoi S (2001) Study on evaporative cooling effect of roof lawn gardens. Energy Build 33:653–666

    Article  Google Scholar 

  • Onset Computer Corporation (2012) Monitoring green roof performance with weather stations. MKT1017-0912, Bourne, MA

    Google Scholar 

  • Palla A, Gnecco I, Lanza LG (2012) Compared performance of a conceptual and a mechanistic hydrologic models of a green roof. Hydrol Process 26(1):73–84

    Article  Google Scholar 

  • Panayiotis N, Tsiotsiopoulou P, Chronopoulos I (2003) Soil amendments reduce roof garden weight and influence the growth rate of Lantana. Hortscience 38(4):618–622

    Google Scholar 

  • Pearlmutter D, Rosenfeld S (2008) Performance analysis of a simple roof cooling system with irrigated soil and two shading alternatives. Energy Build 40(5):855–864

    Article  Google Scholar 

  • Peng LLH, Jim CY (2013) Green-roof effects on neighborhood microclimate and human thermal sensation. Energies 6(2):598–618

    Article  Google Scholar 

  • Pierre J, Bisby L, Anderson B, MacDougall C (2010) Thermal performance of green roof panels in sub-zero temperatures. J Gr Build 5(2):91–104

    Article  Google Scholar 

  • PlaNYC (2008) Sustainable stormwater management plan. City of New York

    Google Scholar 

  • Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13(2–3):125–153

    Article  Google Scholar 

  • Retzlaff W, Celik S, Morgan S, Graham M, Luckett K (2010) Into the wind—wind tunnel testing of green roof systems. In: Proc. of Cities Alive: 8th Annual Green Roof & Wall Conference. Vancouver, BC. 30 Nov–3 Dec 2010

    Google Scholar 

  • Rosatto H, Meyer M, Laureda D et al (2013) Water retention efficiency of green roof systems in extensive and intensive type covers. Revista De La Facultad De Ciencias Agrarias 45(1):169–183

    Google Scholar 

  • Rostad N, White S, DiGiovanni K, Montalto F (2011) Canopy interception in vegetated stormwater management features. In: Proc. of American Geophysical Union 2011 Meeting, San Francisco, California. 5–9 December 2011

    Google Scholar 

  • Rowe DB (2011) Green roofs as a means of pollution abatement. Environ Pollut 159(8–9):2100–2110

    Article  CAS  PubMed  Google Scholar 

  • Rowe DB, Kolp MR, Greer SE, Getter KL (2014) Comparison of irrigation efficiency and plant health of overhead, drip, and sub-irrigation for extensive green roofs. Ecol Eng 64:306–313

    Article  Google Scholar 

  • Schneider K (2011) Quantifying evapotranspiration from a green roof analytically. Master’s Thesis, Villanova University

    Google Scholar 

  • Schroll E, Lambrinos J, Righetti T, Sandrock D (2011) The role of vegetation in regulating stormwater runoff from green roofs in a winter rainfall climate. Ecol Eng 37(4):595–600

    Article  Google Scholar 

  • Seidl M, Gromaire M-C, Saad M, De Gouvello B (2013) Effect of substrate depth and rain-event history on the pollutant abatement of green roofs. Environ Pollut 183:195–203

    Article  CAS  PubMed  Google Scholar 

  • Sherrard JA, Jacobs JM (2012) Vegetated roof water-balance model: experimental and model results. J Hydrol Eng 17(8):858–868

    Article  Google Scholar 

  • Sidwell A, Gibbs-Alley J, Forrester K, Jost V, Luckett K, Morgan S, Yan T, Noble B, Retzlaff W (2008) Evaluation of the thermal benefits of green roof systems. In: Proc. of 6th Annual Greening Rooftops for Sustainable Communities Conference, Baltimore, MD. 30 April to 2 May 2008

    Google Scholar 

  • Simmons M, Gardiner B, Windhager S, Tinsley J (2008) Green roofs are not created equal: the hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urb Ecosyst 1(4):339–348

    Article  Google Scholar 

  • Skabelund LR, Blocksome C, Brokesh D, Kim HJ, Knapp M, Hamehkasi M (2014) Semi-arid green roof research 2009-2014: Resilience of native species. In Proc. of 12th Annual Cities Alive Green Roof and Wall Conference, Nashville, TN. 12–15 November 2014

    Article  Google Scholar 

  • Song U, Kim E, Bang JH, Son DJ, Waldman B, Lee EJ (2013) Wetlands are an effective green roof system. Build Environ 66:141–147

    Article  Google Scholar 

  • Spirn AW (1984) The granite garden: urban nature and human design. Basic Books, New York

    Google Scholar 

  • Starry O (2013) The comparative effects of three sedum species on green roof stormwater retention. Dissertation, U of Maryland

    Google Scholar 

  • Starry O, Lea-Cox JD, Kim J, van Iersel MW (2014) Photosynthesis and water use by two Sedum species in green roof substrate. Environ & Experimental Botany 107(2014):105–112

    Google Scholar 

  • Stovin V, Vesuviano G, Kasmin H (2012) The hydrological performance of a green roof test bed under UK climatic conditions. J Hydrol 414:148–161

    Article  Google Scholar 

  • Susca T, Gaffin SR, Dell’Osso GR (2011) Positive effects of vegetation: urban heat island and green roofs. Environ Pollut 159(8–9):2119–2126

    Article  CAS  PubMed  Google Scholar 

  • Sutton, RK (2013) Seeding green roofs with native grasses. J Living Archit 1(1):26

    Google Scholar 

  • Tanner CB (1967) Measurement of evapotranspiration. In: Hagan RM, Haise HR, Edminster TW (eds) Irrigation of agricultural lands, Amer Soc Agron Monograph 11:534–574

    Google Scholar 

  • Teemusk A, Mander U (2007) Rainwater runoff quantity and quality performance from a green roof: the effects of short-term events. Ecol Eng 30(3):271–277

    Article  Google Scholar 

  • Thuring CE, Dunnett N (2014) Vegetation composition of old extensive green roofs (from 1980s Germany). Ecol Process 3:4

    Article  Google Scholar 

  • Tilman D (1989) Ecological experimentation: strengths and conceptual problems. In: Likens GE (ed) Long-term studies in ecology: approaches and alternatives. Springer Verlag, Berlin, pp 136–157

    Chapter  Google Scholar 

  • Toland DC, Haggard BE, Boyer ME (2012) Evaluation of nutrient concentrations in runoff water from green roofs, conventional roofs and urban streams. Trans A S A & B E 55(1):99–106

    CAS  Google Scholar 

  • Tsiotsiopoulou P, Nektarios A, Chronopoulos I (2003) Substrate temperature fluctuation and dry-weight partitioning of Lantana grown in four green roof growing media. J Hortic Sci Biotechnol 78(6):904–910

    Google Scholar 

  • Van Seters T, Rocha L, Smith D, MacMillan G (2009) Evaluation of green roofs for runoff retention, runoff quality, and leachability. Water Qual Res J Can 44(1):33–47

    Google Scholar 

  • Voyde E, Fassman E, Simcock R (2010) Hydrology of an extensive living roof under sub-tropical climate conditions in Auckland, New Zealand. J Hydrol 394(3–4):384–395

    Article  Google Scholar 

  • Voyde E, Fassman E, Simcock R, Wells J (2010) Quantifying evapotranspiration rates for New Zealand green roofs. J Hydrol Eng, Special Issue: Low Impact Development, Sustainability Science, and Hydrological Cycle 15:395–403

    Article  Google Scholar 

  • Wadzuk B, Schneider D, Feller M, Traver R (2013) Evapotranspiration from a green-roof storm-water control measure. J Irrigation Drain Eng 139(12):995–1003

    Article  Google Scholar 

  • Walmart et al (2013) Green roof performance: a cost-benefit analysis based on Walmart’s Chicago store. 31 Jan 2013 report

    Google Scholar 

  • Wang X, Zhao X, Peng C, Zhang X, Wang J (2013) A field study to evaluate the impact of different factors on the nutrient pollutant concentrations in green roof runoff. Water Sci Technol 68(12):2691–2697

    Article  CAS  PubMed  Google Scholar 

  • Wanielista M, Minareci M, Catbas N, Hardin M (2011) Green roofs and wind loading. Florida Dept. of Environmental Protection and U of Florida Stormwater Management Academy, FDEP:934

    Google Scholar 

  • Welker AL, Mandarano L et al (2013) Application of a monitoring plan for storm-water control measures in the philadelphia region. J Environ Eng 139(8):1108–1118

    Article  CAS  Google Scholar 

  • Whittinghill LJ, Rowe DB, Schutzki R, Cregg BM (2014) Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc Urb Plan 123:41–48

    Article  Google Scholar 

  • Williams C (2013) Portland state will build green roof research site on Walmart’s new North Portland store. 23 Oct 2013 News: Portland State U

    Google Scholar 

  • Wong NH, Chen Y, Ong CL, Sia A (2003) Investigation of thermal benefits of rooftop garden in the tropical environment. Build Environ 38:261–270

    Article  Google Scholar 

  • Xu CY, Chen D (2005) Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol Process 19(18):3717–3734

    Article  CAS  Google Scholar 

  • Zapater-Pereyra M, van Dien F, van Bruggen JJA, Lens PNL (2013) Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater. Water Sci Technol: J Int Assoc Water Pollut Res 68(10):2264–2270

    Article  CAS  Google Scholar 

  • Zhang CL, Zou X-Y, Yang P et al (2007) Wind tunnel test and cs tracing study on wind erosion of several soils in Tibet. Soil Tillage Res 94:269–82

    Article  Google Scholar 

  • Zhao MJ, Srebric J (2012) Assessment of green roof performance for sustainable buildings under winter weather conditions. J Cent South Univ Technol 19(3):639–644

    Article  Google Scholar 

  • Zheng, Y, Clark MJ (2013) Optimal growing substrate pH for five sedum species. Hortscience 48(4):448–452

    Google Scholar 

Personal Communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee R. Skabelund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skabelund, L., DiGiovanni, K., Starry, O. (2015). Monitoring Abiotic Inputs and Outputs. In: Sutton, R. (eds) Green Roof Ecosystems. Ecological Studies, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-14983-7_2

Download citation

Publish with us

Policies and ethics