Skip to main content

FRET Microscopy: Basics, Issues and Advantages of FLIM-FRET Imaging

  • Chapter
  • First Online:
Advanced Time-Correlated Single Photon Counting Applications

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 111))

Abstract

Förster resonance energy transfer (FRET) is an effective and high resolution method to investigate protein–protein interaction in live or fixed specimens. The FRET technique is increasingly employed to evaluate the molecular mechanisms governing diverse cellular processes such as vesicular transport, signal transduction and the regulation of gene expression. For FRET to occur, protein moieties should be close together within 10 nm, the dipole moment of the fluorophore targeted to the proteins should have an appropriate orientation, and the spectral overlap of the donor emission with the acceptor absorption should be >30 %. FRET can be used to estimate the distance between interacting protein molecules in vivo or in vitro using light microscopy systems. Visible fluorescent proteins (VFPs) have been widely used as a FRET pair in addition to organic dyes. Light microscopy techniques including wide-field, confocal and multiphoton microscopy systems provide spatial information of the interacting proteins with nanometer resolution. For better interpretation and quantitation of the FRET signal the contaminations—also called spectral bleedthrough (SBT)—have to be removed. Another imaging approach, fluorescence lifetime imaging microscopy (FLIM) also provides quantitative information with spatial and temporal details of protein-protein interactions. No algorithm is required here to remove any contamination, as in FLIM-FRET only the change in lifetime value of the donor without and with the acceptor molecules is monitored. The lifetime of the donor decreases at the occurrence of FRET. FLIM is sensitive to the local microenvironment of the molecule but insensitive to the change in fluorophore concentration or excitation intensity. The FLIM-FRET technique is ideal for dark acceptors and the investigation of NADH molecules such as NADH, FAD, Tryptophan, etc. FLIM-FRET techniques provide high temporal resolution of protein-protein interactions in live specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Clegg, The history of FRET: from conception through the labors of birth. in Reviews in Fluorescence, ed by C.D. Geddes, J.R. Lakowicz (Springer, New York, 2006), pp. 1–45

    Google Scholar 

  2. Y. Sun, H. Wallrabe, S.-A. Seo, A. Periasamy, FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth. Chem. Phys. Chem. 12, 462–474 (2011)

    CAS  Google Scholar 

  3. Th. Förster, Energiewanderung und Fluoreszenz. Naturwissenschaften 6, 166–175 (1946)

    Google Scholar 

  4. Th. Förster, Energy migration and fluorescence. Translated by Klaus Suhling. J. Biomed. Opt. 17, 011002-1–011002-10

    Google Scholar 

  5. S.S. Vogel, C.T. Thaler, P.S. Blank, S.V. Koushik, Time-resolved fluorescence anisotropy. in FLIM Microscopy in Biology and Medicine, ed by A. Periasamy, R.M. Clegg (CRC Press (Taylor & Francis Group), New York, 2010), pp. 245–288

    Google Scholar 

  6. T.W.J. Gadella, FRET and FLIM Techniques (Elsevier, New York, 2009)

    Google Scholar 

  7. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  8. A. Periasamy, R.M. Clegg, FLIM Microscopy in Biology and Medicine (CRC Press (Taylor & Francis Group), New York, 2010)

    Google Scholar 

  9. A. Periasamy, R.N. Day, Molecular Imaging: FRET Microscopy and Spectroscopy (Oxford University Press, New York, 2005)

    Google Scholar 

  10. Y. Sun, C. Rombola, V. Jyothikumar, A. Periasamy, Förster resonance energy transfer microscopy and spectroscopy to localize protein-protein interactions in live cells. Cytometry A 83A(9), 780–793 (2013)

    Article  CAS  Google Scholar 

  11. Y. Sun, H. Wallrabe, C. Booker, R.N. Day, A. Periasamy, Three-color spectral FRET microscopy localizes three interacting proteins in living cells. Biophys. J. 99, 1274–1283 (2010)

    Article  CAS  Google Scholar 

  12. H. Wallrabe, Y. Cai, Y. Sun, A. Periasamy, R. Luzes, X. Fang, H.-M. Kan, L.C. Cameron, D.A. Schafer, G.S. Bloom, IQGAP1 interactome analysis by In Vitro reconstitution and live cell 3-color FRET microscopy. Cytoskeleton 70, 819–836 (2013)

    Article  CAS  Google Scholar 

  13. S.S. Vogel, C. Thaler, S.V. Koushik, Fanciful FRET. Sci STKE 18(331) (2006)

    Google Scholar 

  14. R.N. Day, M.W. Davidson, The fluorescent protein palette: tools for cellular imaging. ChemSoc Rev. 38, 2887–2921 (2009)

    Article  CAS  Google Scholar 

  15. R.H. Newman, M.D. Fosbrink, J. Zhang, Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem. Rev. 111, 3614–3666 (2011)

    Article  CAS  Google Scholar 

  16. G.H. Patterson, J. Lippincott-Schwartz, A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002)

    Article  CAS  Google Scholar 

  17. J. Sambrook, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989)

    Google Scholar 

  18. J. Zhang, R.E. Campbell, A.Y. Ting, R.Y. Tsien, Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002)

    Article  CAS  Google Scholar 

  19. H. Wallrabe, M. Elangovan, A. Burchard, A. Periasamy, M. Barroso, Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes. Biophys. J. 85, 559–571 (2003)

    Article  CAS  Google Scholar 

  20. Y. Chen, J.D. Mills, A. Periasamy, Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71, 528–541 (2003)

    Article  CAS  Google Scholar 

  21. R.N. Day, C. Booker, A. Periasamy, The Characetrization of an improved donor fluorescent protein for Förster resonance energy transfer microscopy. J. Biomed. Opt. 13, 031203 (2008)

    Article  Google Scholar 

  22. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)

    Article  CAS  Google Scholar 

  23. Z. Xu, K. Nagashima, D. Sun, T. Rush, A. Northrup, J.N. Andersen, I. Kariv, E.V. Bobkova, Development of high-throughput TR-FRET and AlphaScreen assays for identification of potent inhibitors of PDK1. J. Biomol. Screen. 14, 1257–1262 (2009)

    Article  CAS  Google Scholar 

  24. K. Lundin, K. Blomberg, T. Nordstrom, C. indqvist, Development of a time-resolved fluorescence resonance energy transfer assay (cell TR-FRET) for protein detection on intact cells. Anal. Biochem. 299, 92–97 (2001)

    Article  CAS  Google Scholar 

  25. M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 9, 273–294 (1931)

    Article  Google Scholar 

  26. W. Becker, B. Su, K. Weisshart, O. Holub, FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Micr. Res. Tech. 74, 804–811 (2011)

    CAS  Google Scholar 

  27. Y. Chen, M. Elangovan, A. Periasamy, FRET data analysis: the algorithm. in Molecular Imaging: FRET Microscopy and Spectroscopy, ed by A. Periasamy, R.N. Day (Elsevier, New York, 2005), pp. 126–145

    Google Scholar 

  28. Y. Sun, A. Periasamy, Additional correction for energy transfer efficiency calculation in filter-based Förster resonance energy transfer microscopy for more accurate result. J. Biomed. Opt. 15(2), 020513 (2010)

    Article  Google Scholar 

  29. Y. Chen, J.P. Mauldin, R.N. Day, A. Periasamy, Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J. Microsc. 228, 139–152 (2007)

    Article  CAS  Google Scholar 

  30. G.W. Gordon, G. Berry, X.H. Liang, B. Levine, B. Herman, Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713 (1998)

    Article  CAS  Google Scholar 

  31. A. Hoppe, K. Christensen, J.A. Swanson, Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83(6), 3652–3664 (2002)

    Article  CAS  Google Scholar 

  32. Y. Sun, C.F. Booker, S. Kumari, R.N. Day, M. Davdison, A. Periasamy, Characterization of an orange acceptor fluorescent protein for sensitized spectral FRET microscopy using a white light laser. J. Biomed. Opt. 14(5), 054009 (2009)

    Article  Google Scholar 

  33. S.V. Koushik, H. Chen, C. Thaler, H.L. Puhl, S.S. Vogel, Cerulean, venus, and VenusY67C FRET reference standards. Biophys. J. 91, L99–L101 (2006)

    Article  CAS  Google Scholar 

  34. H. Wallrabe, A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005)

    Article  CAS  Google Scholar 

  35. H.C. Gerritsen, M.A.H. Asselbergs, A.V. Agronskaia, W.G.J.H.M. van Sark, Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution, J. Microsc. 206, 218–224 (2002)

    Google Scholar 

  36. M. Köllner, J. Wolfrum, How many photons are necessary for fluorescence-lifetime measurements? Phys. Chem. Lett. 200, 199–204 (1992)

    Article  Google Scholar 

  37. J.P. Philip, K. Carlsson, Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J. Opt. Soc. Am. A20, 368–379 (2003)

    Article  Google Scholar 

  38. W. Becker, A. Bergmann, in Lifetime-Resolved Imaging in Nonlinear Microscopy, ed by B.R. Masters, P.T.C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, Oxford, 2008)

    Google Scholar 

  39. W. Becker, Fluorescence lifetime imaging—techniques and applications. J. Microsc. 247(2), 119–136 (2012)

    Article  CAS  Google Scholar 

  40. G.H. Patterson, D.W. Piston, Photobleaching in two-photon excitation microscopy. Biophys. J. 78(4), 2159–2162 (2000)

    Article  CAS  Google Scholar 

  41. L.M. Tiede, M.G. Nichols, Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy. Photochem. Photobiol. 82, 656–664 (2006)

    Article  CAS  Google Scholar 

  42. K. König, T.W. Becker, P. Fischer, I. Riemann, K.J. Halbhuber, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes, Opt. Lett. 15; 24(2), 113–115 (1999)

    Google Scholar 

  43. M. Elangovan, R.N. Day, A. Periasamy, Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J Microscopy. 205, 3–14 (2002)

    Article  CAS  Google Scholar 

  44. R.V. Krishnan, A. Masuda, V.E. Centonze, B. Herman, Quantitative imaging of protein-protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera. J. Biomed. Opt. 8, 362–367 (2003)

    Article  CAS  Google Scholar 

  45. R.V. Krishnan, H. Saitoh, H. Terada, V.E. Centonze, B. Herman, Development of a Multiphoton Fluorescence Lifetime Imaging Microscopy (FLIM) system using a streak camera. Rev. Sci. Instrum. 74, 2714–2721 (2003)

    Article  CAS  Google Scholar 

  46. A. Periasamy, P. Wodnicki, X.F. Wang, S. Kwon, G.W. Gordon, B. Herman, Time resolved fluorescence lifetime imaging microscopy using picosecond pulsed tunable dye laser system. Rev. Sci. Instrum. 67, 3722–3731 (1996)

    Article  CAS  Google Scholar 

  47. K.K. Sharman, A. Periasamy, H. Asworth, J.N. Demas, Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes. Anal. Chem. 71, 947–952 (1999)

    Article  CAS  Google Scholar 

  48. Y. Sun, R.N. Day, A. Periasamy, Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc. 6, 1324–1340 (2011)

    Article  CAS  Google Scholar 

  49. C. Biskup, T. Zimmer, K. Benndorf, FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat. Biotechnol. 22(2), 220–224 (2004)

    Article  CAS  Google Scholar 

  50. W. Becker, K. Benndorf, A. Bergmann, C. Biskup, K. König, U. Tirlapur, T. Zimmer, FRET measurements by TCSPC laser scanning microscopy. Proc. SPIE 4431, 94–98 (2001)

    Article  Google Scholar 

  51. W. Becker, Advanced time-correlated single photon counting techniques (Springer, Berlin, 2005)

    Book  Google Scholar 

  52. W. Becker, A. Bergmann, C. Biskup, Multi-spectral fluorescence lifetime imaging by TCSPC. Micr. Res. Tech. 70, 403–409 (2007)

    Article  CAS  Google Scholar 

  53. W. Becker, The bh TCSPC handbook. 5th edition. Becker & Hickl GmbH (2012), www.becker-hickl.com

  54. C.A. Bücherl, A. Bader, A.H. Westphal, S.P. Laptenok, J.W. Borst, FRET-FLIM applications in plant systems. Protoplasma 251(2), 383–394 (2014)

    Article  Google Scholar 

  55. R. Krahl, A. Bülter, F. Koberling, Performance of the Micro Photon Devices PDM 50CT SPAD detector with PicoQuant TCSPC systems, Technical Note (PicoQuant GmbH, 2005) (2005)

    Google Scholar 

  56. R.N. Day, Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy. Methods 66, 200–207 (2014)

    Article  CAS  Google Scholar 

  57. B.J. Bacskai, J. Skoch, G.A. Hickey, R. Allen, B.T. Hyman, Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques. J. Biomed. Opt. 8(3), 368–375 (2003)

    Article  CAS  Google Scholar 

  58. W. Becker, Recording the Instrument Response Function of a Multiphoton FLIM System, Application Notes, www.becker-hickl.com (2007)

  59. Y. Chen, A. Periasamy, Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microscopy Research and Techniques. 63, 72–80 (2004)

    Article  CAS  Google Scholar 

  60. R.R. Duncan, A. Bergmann, M.A. Cousin, D.K. Apps, M.J. Shipston, Multi-dimensional time-correlated single-photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells. J. Microsc. 215, 1–12 (2004)

    Article  CAS  Google Scholar 

  61. K.W. Eliceiri, C.-H. Fan, G.E. Lyons, J.G. White, Analysis of histology specimens using lifetime multiphoton microscopy. J. Biomed. Opt. 8, 376–380 (2003)

    Article  Google Scholar 

  62. K. König, I. Riemann, High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Optics 8, 432–439 (2003)

    Article  Google Scholar 

  63. W. Becker, A. Bergmann, M.A. Hink, K. König, K. Benndorf, C. Biskup, Fluorescence lifetime imaging by time-correlated single photon counting. Micr. Res. Techn. 63, 58–66 (2004)

    Article  CAS  Google Scholar 

  64. C. Biskup, T. Zimmer, L. Kelbauskas, B. Hoffmann, N. Klöcker, W. Becker, A. Bergmann, K. Benndorf, Multi-dimensional fluorescence lifetime and fret measurements. Micr. Res. Tech. 70, 403–409 (2007)

    Article  Google Scholar 

  65. A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, R. Steiner, SLIM: A New Method for Molecular Imaging. Micr. Res. Tech. 70, 403–409 (2007)

    Article  Google Scholar 

  66. D. Chorvat, A. Chorvatova, Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues. Laser Phys. Lett. 6, 175–193 (2009)

    Article  CAS  Google Scholar 

  67. K. Abe, L. Zhao, A. Periasamy, X. Intes, M. Barroso, Non-invasive in vivo imaging of breast cancer cell internalization of transferrin by near infrared FRET. PLoS ONE 8(11), e80269 (2013)

    Article  Google Scholar 

  68. F.G. Cremazy, E.M. Manders, P.I. Bastiaens, G. Kramer, G.L. Hager, E.B. van Munster, P.J. Verschure, T.J. Gadella Jr, R. van Driel, Imaging in situ protein–DNA interactions in the cell nucleus using FRET–FLIM. Exp. Cell Res. 309, 390–396 (2005)

    Article  CAS  Google Scholar 

  69. J.D. Lee, Y.F. Chang, F.J. Kao, L.S. Kao, C.C. Lin, A.C. Lu, B.C. Shyu, S.H. Chiou, D.M. Yang, Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique. Microsc. Res. Tech. 71(1), 26–34 (2008)

    Article  CAS  Google Scholar 

  70. C. Biskup, L. Kelbauskas, T. Zimmer, K. Benndorf, A. Bergmann, W. Becker, J.P. Ruppersberg, C. Stockklausner, N. Klöcker, Interaction of PSD-95 with potassium channels visualized by fluorescence lifetime-based resonance energy transfer imaging. J. Biomed. Opt. 9, 735–759 (2004)

    Article  Google Scholar 

  71. C. Rickman, C.N. Medine, A.R. Dun, D.J. Moulton, O. Mandula, N.D. Halemani, S.O. Rizzoli, L.H. Chamberlain, R.R. Duncan, t-SNARE Protein Conformations Patterned by the Lipid Microenvironment. J. Biol. Chem. 285, 13535–13541 (2010)

    Article  CAS  Google Scholar 

  72. C.N. Medine, A. McDonald, A, Bergmann, R. Duncan, Time-correlated single photon counting FLIM: some considerations for Physiologists. Micr. Res. Tech. 70, 421-425 (2007)

    Google Scholar 

  73. V. Ghukasyan, Y.-Y. Hsu, S.-H. Kung, F.-J. Kao, Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. J. Biomed. Opt. 12, 024016-1–024016-8 (2007)

    Google Scholar 

  74. J.H. Fox, T. Connor, M. Stiles, J. Kama, Z. Lu, K. Dorsey, G. Lieberman, E. Sapp, R.A. Cherny, M. Banks, I. Volitakis, M. DiFiglia, O. Berezovska, A.I. Bush, S.M. Hersch, Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J. Biol. Chem. 286, 18320–18330 (2011)

    Article  CAS  Google Scholar 

  75. L. Munsie, N. Caron, R.S. Atwal, I. Marsden, E.J. Wild, J.R. Bamburg, S.J. Tabrizi, R. Truant, Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum. Mol. Genet. 20(10), 1937–1951 (2011)

    Article  CAS  Google Scholar 

  76. M.T. Kelleher, G. Fruhwirth, G. Patel, E. Ofo, F. Festy, P.R. Barber, S.M. Ameer-Beg, B. Vojnovic, C. Gillett, A. Coolen, G. Kéri, P.A. Ellis, T. Ng, The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients, Targ. Oncol. 4, 235–252 (2009)

    Google Scholar 

  77. E. Boutant, P. Didier, A. Niehl, Y. Mely, C. Ritzenthaler, M. Heinlein, Fluorescent protein recruitment assay for demonstration and analysis of in vivo protein interactions in plant cells and its application to Tobacco mosaic virus movement protein. Plant J. 62, 171–177 (2010)

    Article  CAS  Google Scholar 

  78. C.A. Bücherl, G.W. van Esse, A. Kruis, J. Luchtenberg, A.H. Westphal, J. Aker, A. van Hoek, C. Albrecht, J.W. Borst, C.S. de Vries, Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling1[W][OPEN]. Plant Physiol. 162(4), 1911–1925 (2013)

    Google Scholar 

  79. S. Ganesan, S.M. Ameer-Beg, T.T. Ng, B. Vojnovic, F.S. Wouters, A dark yellow fluorescent protein (YFP)-based Resonance Energy- Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. Proc. Natl. Acad. Sci. USA 103, 4089–4094 (2006)

    Article  CAS  Google Scholar 

  80. R.N. Day, M.W. Davidson, Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. Bioassays 34, 341–350 (2012)

    Article  CAS  Google Scholar 

  81. H. Murakoshi, S.-J. Lee, R. Yasuda, Highly sensitive and quantitative FRET–FLIM imaging in single dendritic spines using improved non-radiative YFP. Brain Cell Biol. 36, 31–42 (2008)

    Article  Google Scholar 

  82. S .Rehman, J. T. Gladman, A. Periasamy, Y. Sun, M.S. van Mahade, Development of an AP-FRET based analysis for characterinzing RNA-protein interactions in myotonic dystrophy (DM1). PLoS ONE 9(4), e95957

    Google Scholar 

  83. R.N. Day, T.C. Voss, J.F. Enwright, C.F. Booker, A. Periasamy, F. Schaufele, Imaging the localized protein interactions between Pit-1 and the CCAAT/enhancer binding protein alpha in the living pituitary cell nucleus. Mol. Endo. 17(3), 333–345 (2003)

    Article  CAS  Google Scholar 

  84. I.A. Demarco, A. Periasamy, C.F. Booker, R.N. Day, Monitoring dynamic protein interactions with photoquenching FRET. Nat. Methods 3, 519–524 (2006)

    Article  CAS  Google Scholar 

  85. Q.Q. Tang, M.D. Lane, Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. Proc. Natl. Acad. Sci. USA 97, 12446–12450 (2000)

    Article  CAS  Google Scholar 

  86. Q.Q. Tang, M.D. Lane, Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13, 2231–2241 (1999)

    Article  CAS  Google Scholar 

  87. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, N. Barry, Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J. Biomed. Opt. 8(3), 381–390 (2003)

    Article  Google Scholar 

  88. R.N. Day, Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy. Methods 66, 200–207 (2014)

    Article  CAS  Google Scholar 

  89. V. Jyothikumar, Y. Sun, A. Periasamy, Investigation of tyrptopahn-NADH in live human cells using 3-photon fluorescence lifetime imaging. J. Biomed. Opt. 18(6), 060501 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding from National Institutes of Health (HL101871 & OD016446) and the University of Virginia. We would like to thank Mr. Horst Wallrabe for his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammasi Periasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Periasamy, A., Mazumder, N., Sun, Y., Christopher, K.G., Day, R.N. (2015). FRET Microscopy: Basics, Issues and Advantages of FLIM-FRET Imaging. In: Becker, W. (eds) Advanced Time-Correlated Single Photon Counting Applications. Springer Series in Chemical Physics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-14929-5_7

Download citation

Publish with us

Policies and ethics