Skip to main content

Imaging Cell and Tissue O2 by TCSPC-PLIM

  • Chapter
  • First Online:

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 111))

Abstract

We describe a technique of imaging tissue oxygen using phosphorescence based probes and TCSPC-PLIM method. Included is a brief overview of the significance of biological oxygen imaging, the theory behind the phosphorescence quenching method, the main O2 sensitive probes (mostly intracellular, cell-permeable) and imaging modalities currently available, highlighting their merits and limitations. In the practical part, the live cell microscopy imaging and TCSPC-PLIM hardware and software are described, along with the detailed experimental procedures of preparation of tissue samples, their staining with intracellular O2 probes, acquisition of PLIM images and their processing to produce 2D and 3D maps of O2 concentration. Several examples demonstrate practical use of O2 imaging with different models of mammalian tissue, including cell mono-layers (2D model), multi-cellular spheroids, scaffold structures and tissue slices (3D models). Physiological experiments and multi-parametric analysis of these samples with some other fluorescent imaging probes are also presented.

James Jenkins and Ruslan I. Dmitriev these authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Becker, A. Bergmann, M.A. Hink, K. König, K. Benndorf, C. Biskup, Fluorescence lifetime imaging by time-correlated single photon counting. Microsc. Res. Techn. 63, 58–66 (2004)

    Article  CAS  Google Scholar 

  2. W. Becker, Advanced Time-Correlated Single-Photon Counting Techniques (Springer, Berlin, 2005)

    Book  Google Scholar 

  3. W. Becker, A. Bergmann, C. Biskup, Multispectral fluorescence lifetime imaging by TCSPC. Microsc. Res. Tech. 70, 403–409 (2007)

    Article  CAS  Google Scholar 

  4. W. Becker, A. Bergmann, Lifetime-Resolved Imaging in Nonlinear Microscopy, in Handbook of Biomedical Nonlinear Optical Microscopy, ed by B.R. Masters, P.T.C. So (Oxford University Press, Oxford, 2008)

    Google Scholar 

  5. W. Becker, B. Su, K. Weisshart, O. Holub, FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc. Res. Tech. 74, 804–811 (2011)

    CAS  Google Scholar 

  6. W. Becker, B. Su, A. Bergmann, K. Weisshart, O. Holub, Simultaneous fluorescence and phosphorescence lifetime imaging. Proc. SPIE 7903, 790320 (2011)

    Article  Google Scholar 

  7. DCS-120 Confocal Scanning FLIM Systems, user handbook, edition (Becker & Hickl GmbH, Berlin, 2012), available on www.becker-hickl.com

  8. W. Becker, The bh TCSPC Handbook. 5th edn, (Becker & Hickl GmbH, Berlin, 2012), available on www.becker-hickl.com

  9. W. Becker, Fluorescence lifetime imaging–techniques and applications. J. Microsc. 247, 119–136 (2012)

    Article  CAS  Google Scholar 

  10. E.R. Carraway, J.N. Demas, B.A. DeGraff, J.R. Bacon, Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal. Chem. 63, 337–342 (1991)

    Article  CAS  Google Scholar 

  11. M.R. Chatni, G. Li, D.M. Porterfield, Frequency-domain fluorescence lifetime optrode system design and instrumentation without a concurrent reference light-emitting diode. Appl. Opt. 48, 5528–5536 (2009)

    Article  CAS  Google Scholar 

  12. R.I. Dmitriev, D.B. Papkovsky, Optical probes and techniques for O2 measurement in live cells and tissue. Cell. Mol. Life Sci. 69, 2025–2039 (2012)

    Article  CAS  Google Scholar 

  13. R.I. Dmitriev, A.V. Zhdanov, G. Jasionek, D.B. Papkovsky, Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes. Anal. Chem. 84, 2930–2938 (2012)

    Article  CAS  Google Scholar 

  14. R.I. Dmitriev, A.V. Zhdanov, Y.M. Nolan, D.B. Papkovsky, Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials 34, 9307–9317 (2013)

    Article  CAS  Google Scholar 

  15. R.I. Dmitriev, A.V. Kondrashina, K. Koren, I. Klimant, A.V. Zhdanov, J.M.P. Pakan, K.W. McDermott, D.B. Papkovsky, Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater. Sci. 2, 853–866 (2014)

    Google Scholar 

  16. R. Dmitriev, S. Borisov, A. Kondrashina, J. P. Pakan, U. Anilkumar, J. M. Prehn, A. Zhdanov, K. McDermott, I. Klimant, D. Papkovsky, Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell. Mol. Life Sci. (2014) doi: DOI:10.1007/s00018-014-1673-5.

  17. I. Dunphy, S.A. Vinogradov, D.F. Wilson, Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal. Biochem. 310, 191–198 (2002)

    Article  CAS  Google Scholar 

  18. N.T. Elliott, F. Yuan, A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J. Pharm. Sci. 100, 59–74 (2011)

    Article  CAS  Google Scholar 

  19. T. Fenchel, B. Finlay, Oxygen and the spatial structure of microbial communities. Biol. Rev. Camb. Philos. Soc. 83, 553–569 (2008)

    Google Scholar 

  20. Y. Feng, J. Cheng, L. Zhou, X. Zhou, H. Xiang, Ratiometric optical oxygen sensing: a review in respect of material design. Analyst 137, 4885–4901 (2012)

    Article  CAS  Google Scholar 

  21. A. Fercher, S.M. Borisov, A.V. Zhdanov, I. Klimant, D.B. Papkovsky, Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5, 5499–5508 (2011)

    Article  CAS  Google Scholar 

  22. O.S. Finikova, A.V. Cheprakov, S.A. Vinogradov, Synthesis and Luminescence of Soluble meso-Unsubstituted Tetrabenzo- and Tetranaphtho[2, 3]porphyrins. J. Org. Chem. 70, 9562–9572 (2005)

    Article  CAS  Google Scholar 

  23. K.A. Foster, F. Galeffi, F.J. Gerich, D.A. Turner, M. Müller, Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog. Neurobiol. 79, 136–171 (2006)

    Article  CAS  Google Scholar 

  24. M.M. Frigault, J. Lacoste, J.L. Swift, C.M. Brown, Live-cell microscopy–tips and tools. J. Cell Sci. 122, 753–767 (2009)

    Article  CAS  Google Scholar 

  25. L.G. Griffith, M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006)

    Article  CAS  Google Scholar 

  26. X.-Y. Han, B. Wei, J.-F. Fang, S. Zhang, F.-C. Zhang, H.-B. Zhang, T.-Y. Lan, H.-Q. Lu, H.-B. Wei, Epithelial-mesenchymal transition associates with maintenance of stemness in spheroid-derived stem-like colon cancer cells. PLoS ONE 8, e73341 (2013)

    Article  CAS  Google Scholar 

  27. Y.-L. Hu, M. DeLay, A. Jahangiri, A.M. Molinaro, S.D. Rose, W.S. Carbonell, M.K. Aghi, Hypoxia-Induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783 (2012)

    Article  CAS  Google Scholar 

  28. K. Kellner, G. Liebsch, I. Klimant, O.S. Wolfbeis, T. Blunk, M.B. Schulz, A. Göpferich, Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol. Bioeng. 80, 73–83 (2002)

    Article  CAS  Google Scholar 

  29. E. Knight, B. Murray, R. Carnachan, S. Przyborski, Alvetex(R): polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol. Biol. 695, 323–340 (2011)

    Article  CAS  Google Scholar 

  30. A.V. Kondrashina, R.I. Dmitriev, S.M. Borisov, I. Klimant, I. O’Brien, Y.M. Nolan, A.V. Zhdanov, D.B. Papkovsky, A phosphorescent nanoparticle-based probe for sensing and imaging of (intra) cellular oxygen in multiple detection modalities. Adv. Funct. Mater. 22, 4931–4939 (2012)

    Article  CAS  Google Scholar 

  31. Y.E. Koo, Y. Cao, R. Kopelman, S.M. Koo, M. Brasuel, M.A. Philbert, Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal. Chem. 76, 2498–2505 (2004)

    Article  CAS  Google Scholar 

  32. J. Lakowicz, E. Terpetschnig, Z. Murtaza, H. Szmacinski, Development of long-lifetime metal-ligand probes for biophysics and cellular imaging. J. Fluoresc. 7, 17–25 (1997)

    Article  CAS  Google Scholar 

  33. A.Y. Lebedev, A.V. Cheprakov, S. Sakadzic, D.A. Boas, D.F. Wilson, S.A. Vinogradov, Dendritic phosphorescent probes for oxygen imaging in biological systems. ACS Appl. Mat. Interfaces 1, 1292–1304 (2009)

    Article  CAS  Google Scholar 

  34. K. Lee, R.A. Roth, J.J. LaPres, Hypoxia, drug therapy and toxicity. Pharm Ther 113, 229–246 (2007)

    Article  CAS  Google Scholar 

  35. Y.E. Lee, E.E. Ulbrich, G. Kim, H. Hah, C. Strollo, W. Fan, R. Gurjar, S. Koo, R. Kopelman, Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal. Chem. 82, 8446–8455 (2010)

    Article  Google Scholar 

  36. L.U. Ling, K.B. Tan, H. Lin, G.N.C. Chiu, The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell Death and Dis. 2, e129 (2011)

    Article  Google Scholar 

  37. J. Liu, J. Hilderink, T.A. Groothuis, C. Otto, C.A. Blitterswijk, J. Boer, Monitoring nutrient transport in tissue engineered grafts. J. Tissue Eng. Regen. Med. (2013). doi: 10.1002/term.1654

    Google Scholar 

  38. D.J. Maltman, S.A. Przyborski, Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochem. Soc. Trans. 38, 1072–1075 (2010)

    Article  CAS  Google Scholar 

  39. D. McLoskey, D. Campbell, A. Allison, G. Hungerford, Fast time-correlated single-photon counting fluorescence lifetime acquisition using a 100 MHz semiconductor excitation source. Meas. Sci. Technol. 22, 067001 (2011)

    Article  Google Scholar 

  40. G. Mehta, A.Y. Hsiao, M. Ingram, G.D. Luker, S. Takayama, Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control Release 164, 192–204 (2012)

    Article  CAS  Google Scholar 

  41. R.L. Morris, T.M. Schmidt, Shallow breathing: bacterial life at low O(2). Nat. Rev. Microbiol. 11, 205–212 (2013)

    Article  CAS  Google Scholar 

  42. F.A. Navarro, P.T. So, R. Nirmalan, N. Kropf, F. Sakaguchi, C.S. Park, H.B. Lee, D.P. Orgill, Two-photon confocal microscopy: a nondestructive method for studying wound healing. Plast. Reconst. Surg. 114, 121–128 (2004)

    Article  Google Scholar 

  43. U. Neugebauer, Y. Pellegrin, M. Devocelle, R.J. Forster, W. Signac, N. Moran, T.E. Keyes, Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chem. Commun. 5307–5309 (2008). doi: 10.1039/B810403D

    Google Scholar 

  44. D.G. Nicholls, L. Johnson‐Cadwell, S. Vesce, M. Jekabsons, N. Yadava, Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J. Neurosci. Res. 85, 3206–3212 (2007)

    Google Scholar 

  45. D.V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic Press, London, 1984)

    Google Scholar 

  46. T.C. O’Riordan, A.V. Zhdanov, G.V. Ponomarev, D.B. Papkovsky, Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved fluorometry. Anal. Chem. 79, 9414–9419 (2007)

    Article  Google Scholar 

  47. F. Pampaloni, E.G. Reynaud, E.H. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007)

    Article  CAS  Google Scholar 

  48. D. Papkovsky, A.V. Zhdanov, A. Fercher, R.I. Dmitriev, J. Hynes, Phosphorescent Oxygen-Sensitive Probes (Springer, Berlin, 2012)

    Book  Google Scholar 

  49. D.B. Papkovsky, R.I. Dmitriev, Biological detection by optical oxygen sensing. Chem. Soc. Rev. 42, 8700–8732 (2013)

    Article  CAS  Google Scholar 

  50. J.P. Philip, K. Carlsson, Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J. Opt. Soc. Am. A20, 368–379 (2003)

    Article  Google Scholar 

  51. M. Quaranta, S.M. Borisov, I. Klimant, Indicators for optical oxygen sensors. Bioanal. Rev. 4, 115–157 (2012)

    Article  Google Scholar 

  52. M. Radisic, J. Malda, E. Epping, W. Geng, R. Langer, G. Vunjak-Novakovic, Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93, 332–343 (2006)

    Article  CAS  Google Scholar 

  53. S. Saharudin, K.M. Isha, Z. Mahmud, S.H. Herman, U.M. Noor, Performance evaluation of optical fiber sensor using different oxygen sensitive nano-materials, in Photonics (ICP). 2013 IEEE 4th International Conference on (IEEE2013), pp. 309–312

    Google Scholar 

  54. H. Sauer, M. Wartenberg, J. Hescheler, Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Phys. and Biochem. 11, 173–186 (2001)

    Article  CAS  Google Scholar 

  55. G.L. Semenza, Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit. Rev. Biochem. Mol. Biol. 35, 71–103 (2000)

    Article  CAS  Google Scholar 

  56. J.A. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu, J.M. Runnels, W. Zaher, L.J. Mortensen, C. Alt, R. Turcotte, R. Yusuf, D. Cote, S.A. Vinogradov, D.T. Scadden, C.P. Lin, Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508(7495), 269–273 (2014)

    Google Scholar 

  57. E. Takahashi, T. Takano, Y. Nomura, S. Okano, O. Nakajima, M. Sato, In vivo oxygen imaging using green fluorescent protein. Am. J. Physiol. Cell Physiol. 291, 31 (2006)

    Article  Google Scholar 

  58. P. Taupin, BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res. Rev. 53, 198–214 (2007)

    Article  CAS  Google Scholar 

  59. V. Tsytsarev, H. Arakawa, S. Borisov, E. Pumbo, R.S. Erzurumlu, D.B. Papkovsky, In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J. Neurosci. Methods 216, 146–151 (2013)

    Article  CAS  Google Scholar 

  60. Y.-C. Tung, A.Y. Hsiao, S.G. Allen, Y.-S. Torisawa, M. Ho, S. Takayama, High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473–478 (2011)

    Article  CAS  Google Scholar 

  61. A.M. Weljie, F.R. Jirik, Hypoxia-induced metabolic shifts in cancer cells: Moving beyond the Warburg effect. Int. J. Biochem. Cell Biol. 43, 981–989 (2011)

    Article  CAS  Google Scholar 

  62. A. Williamson, S. Singh, U. Fernekorn, A. Schober, The future of the patient-specific Body-on-a-chip. Lab Chip 13, 3471–3480 (2013)

    Article  CAS  Google Scholar 

  63. D.F. Wilson, W.M.F. Lee, S. Makonnen, O. Finikova, S. Apreleva, S.A. Vinogradov, Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle. J. Appl. Physiol. 101, 1648–1656 (2006)

    Article  CAS  Google Scholar 

  64. W.R. Wilson, M.P. Hay, Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011)

    Article  CAS  Google Scholar 

  65. K.M. Yamada, E. Cukierman, Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation Ireland, grant 12/RC/2276, the European Commission FP7 Program, grant FP7-HEALTH-2012-INNOVATION-304842-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri B. Papkovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jenkins, J., Dmitriev, R.I., Papkovsky, D.B. (2015). Imaging Cell and Tissue O2 by TCSPC-PLIM. In: Becker, W. (eds) Advanced Time-Correlated Single Photon Counting Applications. Springer Series in Chemical Physics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-14929-5_6

Download citation

Publish with us

Policies and ethics