Skip to main content

TCSPC FLIM with Different Optical Scanning Techniques

  • Chapter
  • First Online:
Advanced Time-Correlated Single Photon Counting Applications

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 111))

Abstract

Scanning a sample with a focused laser beam and detecting light from the illuminated spot delivers images of superior quality. The images are largely free of lateral scattering, and data can be obtained from a defined plane inside the sample. Moreover, nonlinear optical techniques and optical near-field techniques like multiphoton microscopy, STED or NSOM can be applied to record images from deep sample layers or at a spatial resolution below the diffraction limit. Multi-dimensional TCSPC combines favourably with these techniques. The result is a FLIM technique with excellent spatial resolution, excellent image contrast, optical sectioning capability, near-ideal photon efficiency, excellent time resolution, and resolution of multi-exponential decay profiles in the individual pixels of the image. Moreover, it can be used to record multi-wavelength FLIM data, FLIM data for several excitation wavelengths, spatial mosaics of FLIM data, FLIM Z stacks, and temporally resolved FLIM data of physiological changes on the millisecond time scale. This chapter describes the implementation of multi-dimensional TCSPC in the optical systems of confocal and multiphoton laser scanning microscopes, the extension of the wavelength range into the near infrared, the combination of TCSPC with galvanometer scanners, piezo scanners and polygon scanners, the combination with endoscopic systems and with optical systems for imaging of millimeter and centimeter-size objects, and the use of TCSPC FLIM in near-field optical scanning (NSOM) and stimulated emission-depletion (STED) microscopy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Adawi, A. Cadby, L.G. Connolly, W.-C. Hung, R. Dean, A. Tahraoui, A.M. Fox, A.G. Cullis, D. Sanvitto, M.S. Skolnick, D.G. Lidzey, Spontaneous emission control in micropillar cavities containing a fluorescent molecular dye. Adv. Mater. 18, 742–747 (2006)

    Article  CAS  Google Scholar 

  2. E. Auksorius, B.R. Boruah, C. Dunsby, P.M.P. Lanigan, G. Kennedy, M.A.A. Neil, P.M.W. French, Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt. Lett. 33, 113–115 (2008)

    Article  Google Scholar 

  3. R.M. Ballew, J.N. Demas, An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal. Chem. 61, 30 (1989)

    Article  CAS  Google Scholar 

  4. E. Beaupaire, M. Oheim, J. Mertz, Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun. 188, 25–29 (2001)

    Article  Google Scholar 

  5. Becker & Hickl GmbH, DCS-120 Confocal Scanning FLIM Systems, User Handbook, edition 2012. www.becker-hickl.com

  6. Becker & Hickl GmbH, Modular FLIM Systems for Zeiss LSM 510 and LSM 710 Family Laser Scanning Microscopes, User Handbook, 5th edn (Becker & Hickl GmbH, 2012). www.becker-hickl.com

  7. W. Becker, K. Benndorf, A. Bergmann, C. Biskup, K. König, U. Tirlapur, T. Zimmer, FRET measurements by TCSPC laser scanning microscopy. Proc. SPIE 4431, 94–98 (2001)

    Article  Google Scholar 

  8. W. Becker, Advanced time-correlated single-photon counting techniques (Springer, Berlin, 2005)

    Book  Google Scholar 

  9. W. Becker, B. Su, A. Bergmann, K. Weisshart, O. Holub, Simultaneous fluorescence and phosphorescence lifetime imaging. Proc. SPIE 7903, 790320 (2011)

    Article  Google Scholar 

  10. W. Becker, B. Su, K. Weisshart, O. Holub, FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc. Res. Technol. 74, 804–811 (2011)

    CAS  Google Scholar 

  11. W. Becker, The bh TCSPC Handbook, 6th edn (Becker & Hickl GmbH, 2015). www.becker-hickl.com

  12. W. Becker, Fluorescence lifetime imaging—techniques and applications. J. Microsc. 247, 119–136 (2012)

    Article  CAS  Google Scholar 

  13. W. Becker, V. Shcheslavskiy, Fluorescence lifetime imaging with near-infrared dyes. Proc. SPIE 8588, 85880R (2013)

    Google Scholar 

  14. W. Becker, V. Shcheslavkiy, S. Frere, I. Slutsky, Spatially resolved recording of transient fluorescence-lifetime effects by line-scanning TCSPC. Microsc. Res. Technol. 77, 216–224 (2014)

    Article  CAS  Google Scholar 

  15. W. Becker, Fluorescence lifetime imaging techniques: time-correlated single photon counting, in Fluorescence Lifetime Spectroscopy and Imaging, ed. by L. Marcu, P.W.M. French, D.S. Elson (CRC Press, Boca Raton, 2015)

    Google Scholar 

  16. M.Y. Berezin, H. Lee, W. Akers, S. Achilefu, Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems. Biophys. J. 93, 2892–2899 (2007)

    Article  CAS  Google Scholar 

  17. M.Y. Berezin, W.J. Akers, K. Guo, G.M. Fischer, E. Daltrozzo, A. Zumbusch, S. Achilefu, Long lifetime molecular probes based on near-infrared pyrrolopyrrole cyanine fluorophores for in vivo imaging. Biophys. J. 97, L22–L24 (2009)

    Article  CAS  Google Scholar 

  18. M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurement and biological imaging. Chem. Rev. 110, 2641–2684 (2010)

    Article  CAS  Google Scholar 

  19. F. Bestvater, E. Spiess, G. Strobrawa, M. Hacker, T. Feurer, T. Porwolf, U. Berchner-Pfannschmidt, C. Wotzlaw, H. Acker, Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J. Microsc. 208(Pt. 2), 108–115 (2002)

    Article  CAS  Google Scholar 

  20. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, R. Cubeddu, Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media. Rev. Sci. Instrum. 79, 013103-1 to -9 (2008)

    Google Scholar 

  21. H.-G. Breunig, H. Studier, K. König, Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. Opt. Expr. 18(8), 7857–7871 (2010)

    Article  CAS  Google Scholar 

  22. J. Bückers, D. Wildanger, G. Vicidomini, L. Kastrup, S.W. Hell, Simultaneous multi-lifetime multi-colour STED imaging for colocalization anlysis. Opt. Expr. 19, 3130–3143 (2011)

    Article  Google Scholar 

  23. A. Cadby, R. Dean, A.M. Fox, R.A.L. Jones, D.G. Lidzey, Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope. Nano Lett. 5, 2232–2237 (2005)

    Article  CAS  Google Scholar 

  24. A.J. Cadby, R. Dean, C. Elliott, R.A.L. Jones, A.M. Fox, D.G. Lidzey, Imaging the fluorescence decay lifetime of a conjugated-polymer blend by using a scanning near-field optical microscope. Adv. Mater. 19, 107–111 (2007)

    Article  CAS  Google Scholar 

  25. A. Chorvatova, D. Chorvat, Tissue fluorophores and their spectroscopic characteristics, in Fluorescence lifetime spectroscopy and imaging, ed. by L. Marcu, P.W.M. French, D.S. Elson (CRC Press, Boca Raton, 2015)

    Google Scholar 

  26. G. Cox, Optical Imaging Techniques in Cell Biology (Taylor & Francis, Boca Raton, 2007)

    Google Scholar 

  27. W. Denk, J.H. Strickler, W.W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  CAS  Google Scholar 

  28. T. Desmettre, J.M. Devoisselle, S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv. Ophthalmol. 45, 15–27 (2000)

    Article  CAS  Google Scholar 

  29. A. Diaspro, in Building a Two-Photon Microscope Using a Laser Scanning Confocal Architecture, ed. by A. Periasamy. Methods in Cellular Imaging (Oxford University Press, New York, 2001), pp. 162–179

    Google Scholar 

  30. A. Diaspro, M. Corosu, P. Ramoino, M. Robello, Adapting a compact confocal microscope system to a two-photon excitation fluorescence Imaging architecture. Microsc. Res. Technol. 47, 196–205 (1999)

    Article  CAS  Google Scholar 

  31. A. Diaspro (ed.), Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (Wiley-Liss, New York, 2001)

    Google Scholar 

  32. R.C. Dunn, Near-field scanning optical microscopy. Chem. Rev. 99, 2891–2927 (1999)

    Article  CAS  Google Scholar 

  33. F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, R. Wepf, Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm. J. Biomed. Opt. 13(4), 041320 (2008)

    Article  Google Scholar 

  34. F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, R. Wepf, Assessing the risk of skin damage due to femtosecond laser irradiation. J. Biophoton. 1, 470–477 (2008)

    Article  Google Scholar 

  35. J.J. Freed, J.L. Engle, Development of the vibrating-mirror flying spot microscope for untraviolet spctrophotometry. Ann. N.Y. Acad. Sci. 97, 412–488 (1962)

    Article  CAS  Google Scholar 

  36. A. Gaiduk, R. Kühnemuth, S. Felekyan, M. Antonik, W. Becker, V. Kudryavtsev, M. Koenig, C. Sandhagen, C.A.M. Seidel, Time-resolved photon counting allows for new temporal and spacial insights imnto the nanoworld. Proc. SPIE 6372, 637203-1 to -13 (2006)

    Google Scholar 

  37. A. Gaiduk, R. Kühnemuth, S. Felekyan, M. Antonik, W. Becker, V. Kudryavtsev, C. Sandhagen, C.A.M. Seidel, Fluorescence detection with high time resolution: from optical microscopy to simultaneous force and fluorescence spectroscopy. Microsc. Res. Technol. 70, 403–409 (2007)

    Article  Google Scholar 

  38. I. Gannot, I. Ron, F. Hekmat, V. Chernomordik, A. Ganjbakhche, Functional optical detection based on pH dependent fluorescence lifetime. Lasers Surg. Med. 35, 342–348 (2004)

    Article  Google Scholar 

  39. H.C. Gerritsen, M.A.H. Asselbergs, A.V. Agronskaia, W.G.J.H.M. van Sark, Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J. Microsc. 206, 218–224 (2002)

    Google Scholar 

  40. M. Göppert-Mayer, Über elementarakte mit zwei quantensprüngen. Ann. Phys. 9, 273–294 (1931)

    Article  Google Scholar 

  41. T. Gokus, A. Hartschuh, H. Harutyunyan, M. Allegrini, F. Hennrich, M. Kappes, A.A. Green, M.C. Hersam, P.T. Araujo, A. Jorio, Exiton dynamics in individual carbon nanotubes at room temperature. Appl. Phys. Lett. 92, 153116 (2008)

    Article  Google Scholar 

  42. H.H. Gorris, S.M. Saleh, D.B. Groegel, S. Ernst, K. Reiner, H. Mustroph, O.S. Wolfbeis, Long-wavelength absorbing and fluorescent chameleon labels for proteins, peptides, and amines. Bioconjug Chem. 22, 1433–1437 (2011)

    Article  CAS  Google Scholar 

  43. Govindjee, Sixty-three years since kautsky: chlorophyll α fluorescence. Aust. J. Plant Physiol. 22, 131–160 (1995)

    Google Scholar 

  44. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  CAS  Google Scholar 

  45. D. Hu, M. Micic, N. Klymyshyn, Y.D. Suh, H.P. Lu, Correlated topographic and spectroscopic imaging beyond diffraction limit by atomic force microscopy metallic tip-enhanced near-field fluorescence lifetime microscopy. Rev. Sci. Instrum. 74, 3347–3355 (2003)

    Article  CAS  Google Scholar 

  46. G.T. Kennedy, H.B. Manning, D.S. Elson, M.A.A. Neil, G.W. Stamp, B. Viellerobe, F. Lacombe, C. Dunsby, P.M.W. French, A fluorescence lifetime imaging scanning confocal endomicroscope. J. Biophoton. 3, 103–107 (2010)

    Article  CAS  Google Scholar 

  47. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, B.W. Pogue, A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging. Rev. Sci. Instrum. 80, 043701-1 to -10 (2009)

    Google Scholar 

  48. T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999)

    Article  CAS  Google Scholar 

  49. M. Köllner, J. Wolfrum, How many photons are necessary for fluorescence-lifetime measurements? Phys. Chem. Lett. 200, 199–204 (1992)

    Article  Google Scholar 

  50. K. König, P.T.C. So, W.W. Mantulin, B.J. Tromberg, E. Gratton, Two-Photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J. Microsc. 183, 197–204 (1996)

    Google Scholar 

  51. K. König, Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000)

    Article  Google Scholar 

  52. K. König, in Cellular Response to Laser Radiation in Fluorescence Microscopes, ed. by A. Periasamy. Methods in Cellular Imaging (Oxford University Press, New York, 2001), pp. 236–254

    Google Scholar 

  53. K. König, in Multiphoton-induced Cell Damage, ed. by B.R. Masters, P.T.C. So. Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, New York, 2008)

    Google Scholar 

  54. K. Koenig, Clinical multiphoton tomography. J. Biophoton. 1, 13–23 (2008)

    Article  Google Scholar 

  55. K. Koenig, A. Uchugonova, in Multiphoton Fluorescence Lifetime Imaging at the Dawn of Clinical Application, ed. by A. Periasamy, R.M. Clegg. FLIM Microscopy in Biology and Medicine (CRC Press, Boca Raton, 2009)

    Google Scholar 

  56. E.S. Kwak, T.J. Kang, A.A. Vanden Bout, Fluorescence lifetime imaging with near-field scanning optical microscopy. Anal. Chem. 73, 3257–3262 (2001)

    Article  CAS  Google Scholar 

  57. E. Lapointe, J. Pichette, Y. Berube-Lauziere, A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging. Rev. Sci. Instrum. 83, 063703-1 to -14 (2012)

    Google Scholar 

  58. M.D. Lesoine, S. Bose, J.W. Petrich, E.A. Smith, Supercontinuum stimulated emission depletion fluorescence lifetime imaging. J. Phys. Chem. B 116, 7821–7826 (2012)

    Article  CAS  Google Scholar 

  59. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, J. Steinbrink, Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. NeuroImage 31, 600–608 (2006)

    Article  CAS  Google Scholar 

  60. J.J. Mancuso, A.M. Larson, T.G. Wensel, P. Saggau, Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging. J. Biomed. Opt. 14(3), 034048 (2009)

    Article  Google Scholar 

  61. G. McConnel, Confocal laser scanning fluorescence microscopy with a visible continuum source. Op. Expr. 13, 2844–2850 (2004)

    Article  Google Scholar 

  62. G. McConnel, J.M. Girkin, S.M. Ameer-Beg, P.R. Barber, B. Vojnovic, T. Ng, A. Banerjee, T.F. Watson, R.J. Cook, Time-correlated single-photon counting fluorescence lifetime confocal imaging of decayed and sound dental structures with a white-light supercontinuum source. J. Microsc. 225, 126–136 (2007)

    Article  Google Scholar 

  63. D.X. Medina, A. Caccamo, S. Oddo, Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 21, 140–149 (2011)

    Article  CAS  Google Scholar 

  64. M. Micic, D. Hu, Y.D. Suh, G. Newton, M. Romine, H.P. Lu, Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells. Colloids Surf., B 34, 205–212 (2004)

    Article  CAS  Google Scholar 

  65. M. Minsky, US Patent 3013467, 1957

    Google Scholar 

  66. M. Minsky, Memoir on inventing the confocal microscope. Scanning 10, 128–138 (1988)

    Article  Google Scholar 

  67. I.H. Munro, G.R. Jones, M. Tobin, D.A. Shaw, Y. Levine, H. Gerritsen, K. van der Oord, F. Rommerts, Confocal imaging using synchrotron radiation. J. Electron Spectrosc. Relat. Phenom. 80, 343–347 (1996)

    Article  CAS  Google Scholar 

  68. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak, Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001)

    Article  CAS  Google Scholar 

  69. J. Pawley (ed.), Handbook of Biological Confocal Microscopy, 3rd edn (Springer Science and Business Media LLC, New York, 2006)

    Google Scholar 

  70. S. Pelet, M.J.R. Previte, P.T.C. So, Comparing the quantification of Förster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. J. Biomed. Opt. 11, 034017-1 to -11 (2006)

    Google Scholar 

  71. L. Pires, M.S. Nogueira, S. Pratavieira, L.T. Moriyama, C. Kurachi, Time-resolved fluorescence lifetime for cutaneous melanoma detection. Biomed. Opt. Expr. 5, 3080–3089 (2014)

    Article  Google Scholar 

  72. M. Salah, N. Samy, M. Fadel, Methylene blue mediated photodynamic therapy for resistant plaque psoriasis. J. Drags Dermatol. 8, 42–49 (2009)

    Google Scholar 

  73. R.H. Schirmer, B. Coulibaly, A. Stich, M. Scheiwein, H. Merkle, J. Eubel, K. Becker, H. Becher, O. Müller, T. Zich, W. Schiek, B. Kouyate, Methylene blue as an antimalarial agent. Redox Rep. 8, 272–275 (2003)

    Article  CAS  Google Scholar 

  74. P.T.C. So, K.H. Kim, L. Hsu, P. Kaplan, T. Hacewicz, C.Y. Dong, U. Greuter, N. Schlumpf, C. Buehler, Two-photon microscopy of tissues, in Handbook of Biomedical Fluorescence, ed. by M.-A. Mycek, B.W. Pogue (Marcel Dekker, Basel, 2003), pp. 181–208

    Google Scholar 

  75. H. Studier, W. Becker, Megapixel FLIM. Proc. SPIE 8948, 89481K (2014)

    Google Scholar 

  76. K. Suhling, P.M.W. French, D. Phillips, Time-resolved fluorescence microscopy. Photochem. Photobiol. Sci. 4, 13–22 (2005)

    Article  CAS  Google Scholar 

  77. P. Theer, M.T. Hasan, W. Denk, Multi-photon imaging using a Ti:sapphire regenerative amplifier. Proc. SPIE 5139, 1–6 (2003)

    Article  Google Scholar 

  78. C.J.R. Van Der Oord, H.C. Gerritsen, F.F.G. Rommerts, D.A. Shaw, I.H. Munro, Y.K. Levine, Micro-volume time-resolved fluorescence spectroscopy using a confocal synchrotron radiation microscope. Appl. Spectrosc. 49, 1469–1473 (1995)

    Article  Google Scholar 

  79. C.J.R. Van der Oord, J.R. Jones, D.A. Shaw, I.H. Munro, Y.K. Levine, H.C. Gerritsen, High-resolution confocal microscopy using synchrotron radiation. J. Microsc. 182, 217–224 (1996)

    Article  Google Scholar 

  80. G.T. Wondrak, NQQO1-activated phenothiazinium redox cyclers for the targeted bioreductive induction of cancer cell apaptosis. Free Radic. Biol. Med. 15, 178–190 (2007)

    Article  Google Scholar 

  81. J.G. White, W.B. Amos, M. Fordham, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48 (1987)

    Article  CAS  Google Scholar 

  82. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984)

    Google Scholar 

  83. C. Xu, W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996)

    Article  CAS  Google Scholar 

  84. S. Yazdanfar, C. Joo, C. Zhan, M.Y. Berezin, W.J. Akers, S. Achilefu, Multiphoton microscopy with near infrared contrast agents. J. Biomed. Opt. 15(3), 030505-1 to -3 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becker, W., Shcheslavskiy, V., Studier, H. (2015). TCSPC FLIM with Different Optical Scanning Techniques. In: Becker, W. (eds) Advanced Time-Correlated Single Photon Counting Applications. Springer Series in Chemical Physics, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-14929-5_2

Download citation

Publish with us

Policies and ethics