Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 562 Accesses

Abstract

This chapter describes a novel MRF-based method for homology detection and fold recognition. In particular, it covers how to build an MRF model for a protein sequence, how to score the similarity of two MRF models and the similarity between one MRF model and one native structure, and finally an alternating direction method of multipliers (ADMM) method that can optimize the scoring function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschul, S.F., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  2. Marks, D.S., et al.: Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6(12), e28766 (2011)

    Article  Google Scholar 

  3. Jones, D.T., et al.: PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28(2), 184–190 (2012)

    Article  Google Scholar 

  4. Wang, Z., Xu, J.: Predicting protein contact map using evolutionary and physical constraints by integer programming. Bioinformatics 29(13), i266–i273 (2013)

    Article  Google Scholar 

  5. Zhao, F., Xu, J.: A position-specific distance-dependent statistical potential for protein structure and functional study. Structure 20(6), 1118–1126 (2012)

    Article  Google Scholar 

  6. Faraggi, E., Xue, B., Zhou, Y.: Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins Struct. Funct. Bioinf. 74(4), 847–856 (2009)

    Article  Google Scholar 

  7. Malouf, R.: A comparison of algorithms for maximum entropy parameter estimation. In: Proceedings of the 6th Conference on Natural Language Learning, vol. 20. Association for Computational Linguistics (2002)

    Google Scholar 

  8. Ekeberg, M., Hartonen, T., Aurell, E.: Fast pseudo likelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. arXiv preprint arXiv:1401.4832 (2014)

  9. Kamisetty, H., Ovchinnikov, S., Baker, D.: Assessing the utility of coevolution-based residue–residue contact predictions in a sequence-and structure-rich era. Proc. Natl. Acad. Sci. 110(39), 15674–15679 (2013)

    Article  Google Scholar 

  10. Lathrop, R.H.: The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Eng. 7(9), 1059–1068 (1994)

    Article  Google Scholar 

  11. Boyd, S., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  12. Peng, J., Bo, L., Xu, J.: Conditional neural fields. In: Advances in Neural Information Processing Systems (2009)

    Google Scholar 

  13. Ma, J., et al.: Protein threading using context-specific alignment potential. Bioinformatics 29(13), i257–i265 (2013)

    Article  Google Scholar 

  14. Ma, J., et al.: A conditional neural fields model for protein threading. Bioinformatics 28(12), i59–i66 (2012)

    Article  Google Scholar 

  15. Wang, S., et al.: Protein structure alignment beyond spatial proximity, vol. 3. Science Report (2013)

    Google Scholar 

  16. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89(22), 10915–10919 (1992)

    Article  Google Scholar 

  17. Prlić, A., Domingues, F.S., Sippl, M.J.: Structure-derived substitution matrices for alignment of distantly related sequences. Protein Eng. 13(8), 545–550 (2000)

    Article  Google Scholar 

  18. Tan, Y.H., Huang, H., Kihara, D.: Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences. Proteins Struct. Funct. Bioinf. 64(3), 587–600 (2006)

    Article  Google Scholar 

  19. Shen, M.Y., Sali, A.: Statistical potential for assessment and prediction of protein structures. Protein Sci. 15(11), 2507–2524 (2006)

    Google Scholar 

  20. Zhang, J., Zhang, Y.: A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction. PLoS ONE 5(10), e15386 (2010)

    Article  Google Scholar 

  21. Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11(11), 2714–2726 (2002)

    Article  Google Scholar 

  22. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xu, J., Wang, S., Ma, J. (2015). Method. In: Protein Homology Detection Through Alignment of Markov Random Fields. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-14914-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14914-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14913-4

  • Online ISBN: 978-3-319-14914-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics