Skip to main content

Abstract

The salts of milk are mainly the phosphates, citrates, chlorides, sulphates, carbonates and bicarbonates of sodium, potassium, calcium and magnesium. Approximately 20 other elements are found in milk in trace quantities, including copper, iron, lead, boron, manganese, zinc, iodine, etc. Strictly speaking, the proteins of milk should be included as part of the salt system since these carry positively and negatively charged groups and can form salts with counter-ions; however, they are not normally treated as such. There is no lactate in freshly drawn milk but may be present in stored milk and in milk products. Many of the inorganic elements are of importance in nutrition, in the preparation, processing and storage of milk products due to their marked influence on the conformation and stability of milk proteins, especially caseins, in the activity of some indigenous enzymes and to a lesser extent in the stability of lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buldini, P. L., Cavalli, S., & Sharma, J. L. (2002). Matrix removal for the ion chromatographic determination of some trace elements in milk. Microchemical Journal, 72, 277–284.

    Article  CAS  Google Scholar 

  • Choi, J., Horne, D. S., & Lucey, J. A. (2011). Determination of molecular weight of a purified fraction of colloidal calcium phosphate derived from the casein micelles of bovine milk. Journal of Dairy Science, 94, 3250–3261.

    Article  CAS  Google Scholar 

  • Crowley, S. V., Kelly, A. L., & O’Mahony, J. A. (2014a). Fortification of reconstituted skim milk powder with different calcium salts: Impact of physicochemical changes on stability to processing. International Journal of Dairy Technology, 67, 474–482.

    Article  CAS  Google Scholar 

  • Crowley, S. V., Megemont, M., Gazi, I., Kelly, A. L., Huppertz, T., & O’Mahony, J. A. (2014b). Heat stability of reconstituted milk protein concentrate powders. International Dairy Journal, 37, 104–110.

    Article  CAS  Google Scholar 

  • Davies, D. T., & White, J. C. D. (1962). The determination of calcium and magnesium in milk and milk diffusate. Journal of Dairy Research, 29, 285–296.

    Article  CAS  Google Scholar 

  • Demott, B. J. (1968). Ionic calcium in milk and whey. Journal of Dairy Science, 51, 1008–1012.

    Article  CAS  Google Scholar 

  • Gaucheron, F. (2010). Analysing and improving the mineral content of milk. Cambridge: Woodhead Publishing.

    Book  Google Scholar 

  • Gaucheron, F. (2011). Milk salts: Distribution and analysis. In Encyclopedia of dairy sciences (2nd ed., pp. 908–916). Academic Press, Oxford, UK.

    Google Scholar 

  • Holt, C. (1985). The milk salts: Their secretion, concentration and physical chemistry. In P. F. Fox (Ed.), Developments in dairy chemistry, volume 3, lactose and minor constituents (pp. 143–181). London: Elsevier Applied Science.

    Google Scholar 

  • Holt C., Dalgleish, D.G. and Jenness, R. (1981). Calculation of the ion equilibria in milk diffusate and comparison with experiment. Analytical Biochemistry, 113, 154–163.

    Google Scholar 

  • Holt, C., Timmins, P. A., Errington, N., & Leaver, J. (1998). A core-shell model of calcium phosphate nanoclusters stabilised by β-casein phosphopeptides, derived from sedimentation equilibrium and small-angle X-ray and neutron-scattering measurements. European Journal of Biochemistry, 252, 73–78.

    Article  CAS  Google Scholar 

  • Holt, C., Carver, J. A., Ecroyd, H., & Thorn, D. C. (2013). Caseins and the casein micelle: Their biological functions, structures, and behaviour in foods. Journal of Dairy Science, 96, 6127–6146.

    Article  CAS  Google Scholar 

  • Holt, C., Lenton, S., Nylander, T., Sørensen, E. S., & Teixeira, S. C. M. (2014). Mineralisation of soft and hard tissues and the stability of biofluids. Journal of Structural Biology, 185, 383–396.

    Article  CAS  Google Scholar 

  • Izco, J. M., Tormo, M., Harris, A., Tong, P. S., & Jimenez-Flores, R. (2003). Optimisation and validation of a rapid method to determine citrate and inorganic phosphate in milk by capillary electrophoresis. Journal of Dairy Science, 86, 86–95.

    Article  CAS  Google Scholar 

  • Jenness, R., & Koops, J. (1962). Preparation and properties of salt solution which simulates milk ultrafiltrate. Netherlands Milk and Dairy Journal, 16, 153–164.

    CAS  Google Scholar 

  • Lewis, M. J. (2011). The measurement and significance of ionic calcium in milk – a review. International Journal of Dairy Technology, 1, 1–13.

    Article  Google Scholar 

  • Lucey, J. A., Hauth, B., Gorry, C., & Fox, P. F. (1993). The acid-base buffering properties of milk. Milchwissenschaft, 48, 268–272.

    CAS  Google Scholar 

  • Lyster, R. L. J. (1981). Calculation by computer of individual concentrations in a simulated milk salt solution. II. An extension to the previous model. Journal of Dairy Research, 48, 85–89.

    Google Scholar 

  • McGann, T. C. A., Buchheim, W., Kearney, R. D., & Richardson, T. (1983). Composition and ultrastructure of calcium phosphate - citrate complexes in bovine milk systems. Biochimica et Biophysica Acta, 760, 415–420.

    Article  CAS  Google Scholar 

  • Mutzelburg, I. D. (1979). An enzymatic method for the determination of citrate in milk. Australian Journal of Dairy Technology, 34, 82–84.

    CAS  Google Scholar 

  • Pierre, A., & Brule, G. (1983). Dosage rapide du citrate dans l’ultrafiltrat de lait par complexation cuivrique. Le Lait, 63, 66–74.

    Article  CAS  Google Scholar 

  • Pyne, G. T. (1962). A review on the progress of dairy science. Some aspects of the physical chemistry of the salts in milk. Journal of Dairy Research, 29, 101–130.

    Article  CAS  Google Scholar 

  • Pyne, G. T., & McGann, T. C. A. (1960). The colloidal phosphate of milk. II. Influence of citrate. Journal of Dairy Research, 27, 9–17.

    Article  CAS  Google Scholar 

  • Rose, D., & Tessier, H. (1959). Composition of ultra-filtrates from milk heated at 80 to 220 °F in relation to heat stability. Journal of Dairy Science, 42, 969–980.

    Article  CAS  Google Scholar 

  • Rulliere, C., Rondeau-Mouro, C., Raouche, S., Dufrechou, M., & Marchesseau, S. (2013). Studies of polyphosphate composition and their interaction with dairy matrices by ion chromatography and 31P NMR spectroscopy. International Dairy Journal, 28, 102–108.

    Article  CAS  Google Scholar 

  • Salaun, F., Mietton, B., & Gaucheron, F. (2005). Buffering capacity of dairy products. International Dairy Journal, 15, 95–109.

    Article  Google Scholar 

  • Schmidt, D. G. (1982). Association of caseins and casein micelle structure. In P. F. Fox (Ed.), Developments in Dairy Chemistry, Vol. 1. Protein (pp. 61–86). London: Elsevier Applied Science.

    Google Scholar 

  • Smeets, W. J. G. M. (1955). The determination of the concentration of calcium ions in milk ultrafiltrate. Netherland Milk and Dairy Journal, 9, 249–260.

    CAS  Google Scholar 

  • Sundekilde, U. K., Poulsen, N. A., Larsen, L. B., & Bertram, H. C. (2013). Nuclear magnetic resonance metabonomics reveals strong association between milk metaolites and somatic cell count in bovine milk. Journal of Dairy Science, 96, 290–299.

    Article  CAS  Google Scholar 

  • Tessier, H., & Rose, D. (1958). Calcium ion concentration in milk. Journal of Dairy Science, 41, 351–359.

    Article  Google Scholar 

  • White, J. C. D., & Davies, D. T. (1963). The determination of citric acid in milk and milk sera. Journal of Dairy Research, 30, 171–189.

    Article  CAS  Google Scholar 

Suggested Reading

  • Considine, T., Flanagan, J. and Loveday, S.M. (2014). Interations between Milk Proteins and Micronutrients. Milk Proteins: From Expression to Food. 2nd Edition. H. Singh, M. Boland, A. Thompson, eds. Academic Press, London. pp. 421–449.

    Google Scholar 

  • Davies, D. T., & White, J. C. D. (1960). The use of ultrafiltration and dialysis in isolating the aqueous phase of milk and in determining the partition of milk constituents between the aqueous and disperse phases. Journal of Dairy Research, 27, 171–190.

    Article  CAS  Google Scholar 

  • de la Fuente, M. A. (1998). Changes in the mineral balance of milk submitted to technological treatments. Trends in Food Science and Technology, 9, 281–288.

    Article  Google Scholar 

  • Edmonson, L. F., & Tarassuk, N. P. (1956). Studies on the colloidal proteins of skim milk. II. The effect of heat and disodium phosphate on the composition of the casein complex. Journal of Dairy Science, 49, 123–128.

    Article  Google Scholar 

  • Fiske, C. H., & Stubbarow, J. J. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  • Gao, R., Temminghoff, E. J. M., van Leeuwen, H. P., van Valenberg, H. J. F., Eisner, M. D., & van Boekel, M. A. J. S. (2009). Simultaneous determination of free calcium, magnesium, sodium and potassium ion concentrations in simulated milk ultrafiltrate and reconstituted skim milk using the Donnan Membrane Technique. International Dairy Journal, 19, 431–436.

    Article  CAS  Google Scholar 

  • Gaucheron, F. (2000). Iron fortification in dairy industry. Trends in Food Science and Technology, 11, 403–409.

    Article  CAS  Google Scholar 

  • Greenwald, I., Redish, J., & Kibrick, A. (1940). The dissociation of calcium phosphates. Journal of Biological Chemistry, 135, 65–76.

    CAS  Google Scholar 

  • Hastings, A. B., McLean, F. C., Eichelberger, L., Hall, J. L., & DaCosta, E. (1934). The ionization of calcium, magnesium, and strontium citrates. Journal of Biological Chemistry, 107, 351–370.

    CAS  Google Scholar 

  • Jenness, R., & Patton, S. (1959). The effects of heat on milk. In Principles of dairy chemistry (pp. 329–334). New York: John Wiley & Sons.

    Google Scholar 

  • Marier, J. R., & Boulet, M. (1958). Direct determination of citric acid in milk with an improved pyridine-acetic anhydride method. Journal of Dairy Science, 41, 1683–1692.

    Article  CAS  Google Scholar 

  • McMeckin, J. L., & Groves, M. L. (1964). In B. H. Webb, A. H. Johnson, & J. A. Alford (Eds.), Fundamentals of dairy chemistry (2nd ed.). Westport, CT: AVI Publication Corporation.

    Google Scholar 

  • Mekmene, O., Le Graet, Y. L., & Gaucheron, F. (2009). A model for predicting salt equilibria in milk and mineral-enriched milks. Food Chemistry, 116, 233–239.

    Article  CAS  Google Scholar 

  • Miller, P. G., & Sommer, H. H. (1940). The coagulation temperature of milk as affected by pH, salts, evaporation and previous heat treatment. Journal of Dairy Science, 23, 405–421.

    Article  CAS  Google Scholar 

  • On-Nom, N., Grandison, A. S., & Lewis, M. J. (2010). Measurement of ionic calcium, pH and soluble divalent cations in milk at high temperature. Journal of Dairy Science, 93, 515–523.

    Article  CAS  Google Scholar 

  • Pyne, G. T., & Ryan, J. J. (1950). The colloidal phosphate of milk. I. Composition and titrimetric estimation. Journal of Dairy Research, 17, 200–205.

    Article  CAS  Google Scholar 

  • Rose, D. (1965). Protein stability problems. Journal of Dairy Science, 48, 139–146.

    Article  CAS  Google Scholar 

  • Tabor, H., & Hastings, A. B. (1943). The ionization constant of secondary magnesium phosphate. Journal of Biological Chemistry, 148, 627–632.

    CAS  Google Scholar 

  • Verma, T. S., & Sommer, H. H. (1957a). Study of the naturally occurring salts in milk. Journal of Dairy Science, 40, 331.

    Article  CAS  Google Scholar 

  • Verma, T. S., & Sommer, H. H. (1957b). Study of the naturally occurring salts in milk. Journal of Dairy Science, 40, 331.

    Article  CAS  Google Scholar 

  • White, J. C. D., & Davies, D. T. (1958). The relation between the chemical composition of milk and the stability of the caseinate complex. I. General introduction, description of samples, methods, and chemical composition of samples. Journal of Dairy Research, 25, 236–255.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H., O’Mahony, J.A. (2015). Salts of Milk. In: Dairy Chemistry and Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-14892-2_5

Download citation

Publish with us

Policies and ethics