Skip to main content

Urea Biosynthesis in the Human Fetal Liver

  • Chapter
  • First Online:
Human Fetal Growth and Development

Abstract

There are three types of animals. (1) Ammoniotelic, (2) Uricotelic, and (3) ureotelic. All mammals are Ureotelic.

†Author was deceased at the time of publication

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerbs HA. The metabolism of amino acids in the animal body. Z Physiol Chem. 1933;217:191–227.

    Article  Google Scholar 

  2. Bollman JL, Mann FC, Magath TB. Studies on the physiology of the liver. Am J Physiol. 1924;69:371–92.

    CAS  Google Scholar 

  3. Kerbs HA, Henseleit H. Untersuchungen uber die harnstoffbildung im tierkorper (Studies on urea formation in mammals). Hoppe-Seylers Z Physiol Chem. 1932;210:33–6.

    Google Scholar 

  4. Kerbs HA. Urea synthesis. In: Sumher, Mryback, editors. The enzymes, vol. II, Pt. 2. New York: Academic Press. pp. 866–85.

    Google Scholar 

  5. Walker JB. Argininosuccinic acid form chorella. Proc Natl Acad Sci U S A. 1952;38:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson PM, Meister A. Evidence for asn activated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry. 1965;4:2803–8.

    Article  CAS  PubMed  Google Scholar 

  7. Greenberg DM. Arginase. In: Boyer L, Myrback, editors. The enzymes, vol. 4. 2nd ed. New York: Academic; 1960. p. 257–67.

    Google Scholar 

  8. Baldwin E. An introduction to comp. Biochemistry. 1st ed. London: Cambridge Univ. Press; 1937.

    Google Scholar 

  9. Baldwin E. Dynamic aspects of biochemistry. 2nd ed. London: Cambridge Univ. Press; 1952.

    Google Scholar 

  10. Needham J. Chemical embryology. New York: Macmillan; 1931.

    Book  Google Scholar 

  11. Needham J. Biochemistry and morphogenesis. London: Cambridge Univ. Press; 1942.

    Google Scholar 

  12. Plentl AA. The origin of amnioktic fluid. In: Ville CA. editor. Gestation: Transactions of the Fourth Conference. New York: Josiah Macy Jr. Foundation; 1957. pp. 71–114.

    Google Scholar 

  13. Brown Jr GW, Cohen PP. Biosynthesis of urea metamorphing tadpoles. In: McElory WD, Glass B, editors. The chemical basis of development. Baltimore: Jhons Hopkins Press; 1958. p. 495–513.

    Google Scholar 

  14. Brown Jr GW, Cohen PP. Comparative biochemistry of urea synthesis. J Biol Chem. 1959;234:1769–74.

    CAS  PubMed  Google Scholar 

  15. Kennan AL, Cohen PP. Biochemical studies of the developing mammalian fetus. Dev Biol. 1959;1:511–25.

    Article  Google Scholar 

  16. Raiha NCR, Suihkonen J. Development of the enzymes of urea biosynthesis in rat and human liver. J Padiatr. 1966;69:934–5.

    Article  Google Scholar 

  17. Raiha NCR, Kretchmer N. Urea; biosynthesis during development of the mammal. J Padiatr. 1965;67:950–1.

    Article  Google Scholar 

  18. Miller AL, Chen P. Development of urea cycle enzyme activity in the liver-of fetal and neonatal rats. Enzymol Biol Clin. 1970;11:497–503.

    CAS  Google Scholar 

  19. Illnerova H, Kubat M. Factors possibly inducing the rise in activity of urea cycle enzymes in rat liver during development. Physiol Bohemoslov. 1968;17(1):77–80.

    CAS  PubMed  Google Scholar 

  20. Slemons JM, Morriss WH. The non-protein nitrogen and urea in the maternal and fetal bold at the time of the birth. Bull Johns Hopkins Hosp. 1916;27:343–50.

    CAS  Google Scholar 

  21. Manderscheid H. Uber die harnstoffbildung bei den wirbeltieren. Biochem Z. 1933;263:2456–249.

    Google Scholar 

  22. Ryan WL, Carver MJ. Free amino acids of human foetal and adult liver. Nature. 1966;212:292–3.

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins WT, Tsai H. Ornithine aminotransferase (pig kidney). In: Tabor J, Tabor CW, editors. Methods in enzymology, vol XVII, Pt. A. New York/London: Academic press. pp. 281–5.

    Google Scholar 

  24. Sabrazes, Fauquet. Proprietés hematolytiques de la pre-mière urine du nouveau-né. CR Soc Biol Paris. 1901;53:272.

    Google Scholar 

  25. Barlow A, McCance RA. The nitrogen partition in new born infants’ urine. Arch Dis Child. 1948;23:225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruabtelli FF, Formentin PA. Ammonia nitrogen, urea, uric acid blood levels in the mother and in both umbilieal vessels at delivery. Biol Neonatorum. 1968;13(3–4):147–54.

    Article  Google Scholar 

  27. Raiha NCR, Suihkonen J. Development of urea synthesizing enzymes in human liver. Acta Padiatr Scand. 1968;57:121–4.

    Article  CAS  Google Scholar 

  28. Sallach HJ, Fahien LA. Nitrogen metabolism of amino acids. In: Greenberg DM, editor. Metabolic pathways, vol. III. 3rd ed. New York: Academic; 1969. p. 1–94.

    Google Scholar 

  29. Charbonneau R, Roberge A, Berlinguet L. Variation with age of the enzymes of the urea cycle and aspartate transcarbamylase in rat liver. Can J Biochem. 1967;45:1427–32.

    Article  CAS  PubMed  Google Scholar 

  30. Kretchmer N, Hurwitz R, Raiha NCR. Urea and pyrimidine metabolism during development. Biol Neonatourm. 1966;9(1–6):187–93; Discussion 93–96.

    CAS  Google Scholar 

  31. Hager SE, Jones ME. A glutamine dependent enzyme for the synthesis of carbamyl phosphate for pyrimidine biosynthesis in fetal rat liver. J Biol Chem. 1967;242:5674–80.

    CAS  PubMed  Google Scholar 

  32. Yip MCM, Knox WE. Glutamine dependent carbamyl phosphate synthetase. J Biol Chem. 1970;245:2199–204.

    CAS  PubMed  Google Scholar 

  33. Dutta G, Mukherjee KL. Unpublished observations. 1974.

    Google Scholar 

  34. Mitra, Mukherjee KL. Unpublished observations. 1974.

    Google Scholar 

  35. Cohen PP, Brown Jr GW. Ammonia metabolism and urea biosynthesis. In: Florkin, Mapson, editors. Comparative biochemistry, vol. III. New York: Academic; 1960. p. 161–244.

    Google Scholar 

  36. Russel DH, Potyraj JJ. Spermine synthesis in the uterus of the ovariectomized rat in response to oestradiol-170. Biochem J. 1972;128:1109–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Bhattacharya Dsc, MD, MS, FSOG, FICS, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganguly, C., Samanta, B., Thakurata, G.G., Bhattacharya, C., Mukherjee, K.L., Bhattacharya, N. (2016). Urea Biosynthesis in the Human Fetal Liver. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Growth and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14874-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14874-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14873-1

  • Online ISBN: 978-3-319-14874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics