Skip to main content

Stem Cells in Growth and Development of the Human Fetus

  • Chapter
  • First Online:
  • 1853 Accesses

Abstract

Stem cells are considered the origins of all organisms. In fact, all organisms are formed and developed from a single cell – the zygote, which is the product of oocyte fertilization by the sperm. This cell is referred to as a totipotent stem cell. Through the process of cell division, the totipotent stem cell produces all tissue types within an organism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Altmann CR, Brivanlou AH. Neural patterning in the vertebrate embryo. Int Rev Cytol. 2001;203:447–82.

    Article  CAS  PubMed  Google Scholar 

  2. Amit M. Sources and derivation of human embryonic stem cells. Methods Mol Biol (Clifton, NJ). 2013;997:3–11.

    Article  CAS  Google Scholar 

  3. Andrews PW, Cavagnaro J, Deans R, Feigal E, Horowitz E, Keating A, Rao M, Turner M, Wilmut I, Yamanaka S. Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nat Biotechnol. 2014;32:724–6.

    Article  CAS  PubMed  Google Scholar 

  4. Baron M. Induction of embryonic hematopoietic and endothelial stem/progenitor cells by hedgehog-mediated signals. Differ Res Biol Divers. 2001;68:175–85.

    Article  CAS  Google Scholar 

  5. Bongso A, Eng HL. Stem cells: their definition, classification and sources. In: Bongso A, Lee EH, editors. Stem cells: from benchtop to bedside. Singapore: World Scientific; 2005.

    Chapter  Google Scholar 

  6. Chen SY, Huang YC, Liu SP, Tsai FJ, Shyu WC, Lin SZ. An overview of concepts for cancer stem cells. Cell Transplant. 2011;20:113–20.

    Article  CAS  PubMed  Google Scholar 

  7. Chung YS, Zhang WJ, Arentson E, Kingsley PD, Palis J, Choi K. Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development (Cambridge, England). 2002;129:5511–20.

    Article  CAS  Google Scholar 

  8. Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015;125:2605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14:1384–9.

    Article  CAS  PubMed  Google Scholar 

  10. Factor DC, Najm FJ, Tesar PJ. Generation and characterization of epiblast stem cells from blastocyst-stage mouse embryos. Methods Mol Biol (Clifton, NJ). 2013;1074:1–13.

    Article  CAS  Google Scholar 

  11. Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development (Cambridge, England). 2003;130:4217–27.

    Article  CAS  Google Scholar 

  12. Gillich A, Bao S, Surani MA. Reversion of mouse postimplantation epiblast stem cells to a naive pluripotent state by modulation of signalling pathways. Methods Mol Biol (Clifton, NJ). 2013;1074:15–29.

    Article  CAS  Google Scholar 

  13. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Godin I, Cumano A. The hare and the tortoise: an embryonic haematopoietic race. Nat Rev Immunol. 2002;2:593–604.

    CAS  PubMed  Google Scholar 

  15. Grove EA, Williams BP, Li DQ, Hajihosseini M, Friedrich A, Price J. Multiple restricted lineages in the embryonic rat cerebral cortex. Development (Cambridge, England). 1993;117:553–61.

    CAS  Google Scholar 

  16. Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A. 2004;101:3196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirabayashi M, Goto T, Tamura C, Sanbo M, Hara H, Kato-Itoh M, Sato H, Kobayashi T, Nakauchi H, Hochi S. Derivation of embryonic stem cell lines from parthenogenetically developing rat blastocysts. Stem Cells Dev. 2014;23:107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5:119–37.

    Article  CAS  PubMed  Google Scholar 

  19. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature. 2004;432:625–30.

    Article  CAS  PubMed  Google Scholar 

  20. Ikehara S, Kawamura M, Takao F, Inaba M, Yasumizu R, Than S, Hisha H, Sugiura K, Koide Y, Yoshida TO, et al. Organ-specific and systemic autoimmune diseases originate from defects in hematopoietic stem cells. Proc Natl Acad Sci U S A. 1990;87:8341–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikehara S, Yasumizu R, Inaba M, Izui S, Hayakawa K, Sekita K, Toki J, Sugiura K, Iwai H, Nakamura T, et al. Long-term observations of autoimmune-prone mice treated for autoimmune disease by allogeneic bone marrow transplantation. Proc Natl Acad Sci U S A. 1989;86:3306–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jolicoeur F, Gaboury LA, Oligny LL. Basal cells of second trimester fetal breasts: immunohistochemical study of myoepithelial precursors. Pediatr Dev Pathol: Off J Soc Pediatr Pathol Paediatr Pathol Soc. 2003;6:398–413.

    Article  CAS  Google Scholar 

  23. Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, Smith AE, Prat A, Perou CM, Gilmore H, et al. Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lajtha LG. Stem cell concepts. Differ Res Biol Divers. 1979;14:23–34.

    Article  CAS  Google Scholar 

  25. Li W, Ding S. Converting mouse epiblast stem cells into mouse embryonic stem cells by using small molecules. Methods Mol Biol (Clifton, NJ). 2013;1074:31–7.

    Article  CAS  Google Scholar 

  26. Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 2007;17:1008–19.

    Article  CAS  PubMed  Google Scholar 

  27. Malatesta P, Hartfuss E, Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development (Cambridge, England). 2000;127:5253–63.

    CAS  Google Scholar 

  28. McCarthy M, Turnbull DH, Walsh CA, Fishell G. Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci: Off J Soc Neurosci. 2001;21:6772–81.

    CAS  Google Scholar 

  29. Misson JP, Edwards MA, Yamamoto M, Caviness Jr VS. Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res. 1988;44:95–108.

    Article  CAS  PubMed  Google Scholar 

  30. Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development (Cambridge, England). 2004;131:3133–45.

    Article  CAS  Google Scholar 

  31. Monaghan P, Perusinghe NP, Cowen P, Gusterson BA. Peripubertal human breast development. Anat Rec. 1990;226:501–8.

    Article  CAS  PubMed  Google Scholar 

  32. Morton JI, Siegel BV. Transplantation of autoimmune potential. I. Development of antinuclear antibodies in H-2 histocompatible recipients of bone marrow from New Zealand Black mice. Proc Natl Acad Sci U S A. 1974;71:2162–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol. 2001;29:927–36.

    Article  CAS  PubMed  Google Scholar 

  34. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140:62–73.

    Article  CAS  PubMed  Google Scholar 

  35. Prater MD, Petit V, Alasdair Russell I, Giraddi RR, Shehata M, Menon S, Schulte R, Kalajzic I, Rath N, Olson MF, et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol. 2014;16:942–50, 941–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rios AC, Fu NY, Lindeman GJ, Visvader JE. In situ identification of bipotent stem cells in the mammary gland. Nature. 2014;506:322–7.

    Article  CAS  PubMed  Google Scholar 

  37. Robertson SM, Kennedy M, Shannon JM, Keller G. A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development (Cambridge, England). 2000;127:2447–59.

    CAS  Google Scholar 

  38. Robl JM. Development and application of technology for large scale cloning of cattle. Theriogenology. 1999;51:499–508.

    Article  CAS  PubMed  Google Scholar 

  39. Roep BO, Atkinson M. Animal models have little to teach us about type 1 diabetes: 1. In support of this proposal. Diabetologia. 2004;47:1650–6.

    Article  CAS  PubMed  Google Scholar 

  40. Roy S, Gascard P, Dumont N, Zhao J, Pan D, Petrie S, Margeta M, Tlsty TD. Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc Natl Acad Sci U S A. 2013;110:4598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rudland PS. Histochemical organization and cellular composition of ductal buds in developing human breast: evidence of cytochemical intermediates between epithelial and myoepithelial cells. J Histochem Cytochem: Off J Histochem Soc. 1991;39:1471–84.

    Article  CAS  Google Scholar 

  42. Sadlon TJ, Lewis ID, D’Andrea RJ. BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells (Dayt, Ohio). 2004;22:457–74.

    Article  CAS  Google Scholar 

  43. Schramm RD, Paprocki AM. Strategies for the production of genetically identical monkeys by embryo splitting. Reprod Biol Endocrinol: RB&E. 2004;2:38.

    Article  CAS  Google Scholar 

  44. Seki T, Fukuda K. Methods of induced pluripotent stem cells for clinical application. World J Stem Cells. 2015;7:116–25.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell. 1997;89:981–90.

    Article  CAS  PubMed  Google Scholar 

  46. Shaw JM, Trounson AO. Parthenogenetic activation of unfertilized mouse oocytes by exposure to 1,2-propanediol is influenced by temperature, oocyte age, and cumulus removal. Gamete Res. 1989;24:269–79.

    Article  CAS  PubMed  Google Scholar 

  47. Shipitsin M, Polyak K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest; J Tech Methods Pathol. 2008;88:459–63.

    Article  CAS  Google Scholar 

  48. Sviridova-Chailakhyan TA, Tzoy NG, Panchenko MM, Akatov VS, Chailakhyan LM. An efficient method for isolation of inner cell masses from the mouse blastocysts for culturing embryonic stem cells. Dokl Biol Sci: Proc Acad Sci USSR, Biol Sci Sect/Translated Russ. 2008;423:469–72.

    Article  CAS  Google Scholar 

  49. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  50. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996;56:402–4.

    CAS  PubMed  Google Scholar 

  51. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12:767–75.

    Article  CAS  PubMed  Google Scholar 

  52. Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, et al. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res. 2013;23:1187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Pham, P. (2016). Stem Cells in Growth and Development of the Human Fetus. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Growth and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14874-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14874-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14873-1

  • Online ISBN: 978-3-319-14874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics