Skip to main content

Genetic Disease Specific Human Embryonic Stem Cell Lines

  • Chapter
  • First Online:
Human Fetal Growth and Development

Abstract

Preimplantation Genetic Diagnosis (PGD) provides unlimited source for obtaining human embryonic stem cell (hESC) lines. As PGD involves the pre-selection of the genetic disease – free embryos for transfer back to uterus the affected embryos are either discarded, or used for confirmation of diagnosis. Based on our busy PGD practice, which presently includes over 10,000 cases, we have had a plenty of affected embryos detected, which were used for derivation of the genetic disease specific hESC lines, which presently contains 87 hESC lines obtained from embryos with single-gene and chromosomal disorders. Fourteen lines have different chromosomal abnormalities, including 4 with chromosomal rearrangements, 24 autosomal recessive, 14 X-linked and 35 autosomal dominant disorders. In addition, screening of 137 normal hESC lines for polymorphism in the chemokine receptor 5 (CCR5) CMKBR5 gene resulted in detection of 12 hESC lines with CCR5-del32 allele, including one with two copies of the gene, conferring resistance to HIV. These cell lines are currently used for research purposes in many countries around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ilic D, Giritharan G, Zdravkovic T, et al. Derivation of hESC lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cell Dev. 2009;18:1343–50.

    Article  CAS  Google Scholar 

  2. Yang G, Mai Q, Li T, Zhou C. Derivation of hESC lines from single blastomeres of low quality embryos by direct plating. J Assist Reprod Genet. 2013;30:953–61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tompson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  Google Scholar 

  4. National Institutes of Health guidelines for research using human pluripotent stem cells. NIH stem cells information archives. 25 Aug 2000. www.nih.gov/news/stemcell/stemcellguidelines.htm.

  5. Soukoyan MA, Vatolin SY, Golubitsa AN, et al. Embryonic stem cells derived from morulae, inner cell mass and blastocyst of mink: comparison of their pluripotencies. Mol Reprod Dev. 1993;36:148–58.

    Article  Google Scholar 

  6. Stice SL, Strelchenko NS, Keefer CL, Matthews L. Pluripotent bovine embryonic stem cell lines direct embryonic development following nuclear transfer. Biol Reprod. 1996;54:100–10.

    Article  CAS  PubMed  Google Scholar 

  7. Shamblott MJ, Axelman J, Littlefield JM, et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci U S A. 2001;98:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y. Morula derived human embryonic stem cells. Reprod BioMed Online. 2004;9:623–9.

    Article  PubMed  Google Scholar 

  9. Peura T, Boswan A, Chami O, et al. Karyotypically normal and abnormal hESC lines derived from PGD-analyzed embryos. Cloning Stem Cells. 2008;10:203–16.

    Article  CAS  PubMed  Google Scholar 

  10. Sous-Toby E, Gerecht-Nir S, Amit M, et al. Derivation of a diploid hESC line from mononuclear zygote. Hum Reprod. 2004;19:670–5.

    Article  Google Scholar 

  11. Chen X, Luo Y, Fan Y, et al. Triploid and diploid embryonic stem cell lines derived from tripronuclear human zygotes. Assist Reprod Genet. 2012;29:713–21.

    Article  Google Scholar 

  12. Draper JD, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultures human embryonic stem cells. Nat Biotechnol. 2004;22:53–4.

    Article  CAS  PubMed  Google Scholar 

  13. The International Stem Cell Initiative. Screening ethnically diverse hESC lines identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:1132–46.

    Article  PubMed Central  Google Scholar 

  14. Heins N, Englund MCO, Sjoblom C, et al. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells. 2004;22:367–76.

    Article  PubMed  Google Scholar 

  15. Verlinsky Y, Strelchenko N, Kukharenko V, et al. Impact of meiotic and mitotic non-disjunction on generation of hESC lines. Reprod BioMed Online. 2009;18:120–6.

    Article  PubMed  Google Scholar 

  16. Verlinsky Y, Strelchenko N, Kukharenko V, et al. Hman embryonic stem cell lines with genetic disorders. Reprod BioMed Online. 2005;10:105–10.

    Article  CAS  PubMed  Google Scholar 

  17. Verlinsky Y, Kuliev A. Practical preimplantation genetic diagnosis. London: Springer; 2006.

    Google Scholar 

  18. Verlinsky Y, Strelchenko N, Kukharenko V, et al. Repository of human embryonic stem cell lines and development of individual specific lines using stembrid technology. Reprod BioMed Online. 2006;13:547–50.

    Article  CAS  PubMed  Google Scholar 

  19. Verlinsky Y, Strelchenko N, Kukharenko V, et al. Isolation of human embryonic stem cells from various stages of the human embryo. In: Lakshmipathy, editor. Emerging technology platforms for stem cells. Hoboken: Wiley; 2009. p. 19–27.

    Chapter  Google Scholar 

  20. Pickering S, Minger S, Patel M, et al. Generation of a hESC line encoding the cystic fibrosis mutation Delta F-508 using preimplantation genetic diagnosis. Reprod BioMed Online. 2005;10:390–7.

    Article  PubMed  Google Scholar 

  21. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86:367–77.

    Article  CAS  PubMed  Google Scholar 

  22. Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.

    Article  PubMed  Google Scholar 

  23. Pomerantseva E, Kukharenko V, Goodman A, Vrlinsky O, Rechitsky S, Kuliev A. Human embryonic stem cell lines with CCR5-del32 allele conferring resistance to HIV. Stem Cell Discov. 2011;1:67–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anver Kuliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuliev, A., Verlinsky, O., Rechitsky, S. (2016). Genetic Disease Specific Human Embryonic Stem Cell Lines. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Growth and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14874-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14874-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14873-1

  • Online ISBN: 978-3-319-14874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics