Skip to main content

Optimal Preparation Prior to the Use of Cryopreserved Oocytes

  • Chapter
  • First Online:
Preventing Age Related Fertility Loss

Abstract

The early 1980s saw the first cases of live births after the transfer of autologous frozen embryos be reported [1, 2]. These preliminary reports were met with reasonable resistance by the scientific community owing to the limited efficacy of earlier cryopreservation methods and concerns regarding the overall safety of embryo cryopreservation. This uncertainty effectively relayed embryo cryopreservation at its genesis to the status of an “adjuvant method” for cycles in which the number of embryos produced was deemed too excessive for simultaneous replacement during the fresh embryo transfer (ET) attempt. However, following the advent of more efficient cryopreservation strategies [3] (i.e. vitrification) and reassuring safety data [4, 5], the use of embryo cryopreservation has progressively increased, currently accounting for up to one third of all children born after assisted reproductive technologies (ART) in the United States [6]. Furthermore, cryopreservation has now become an indispensable tool in everyday clinical practice, providing the necessary means to assure the safe storage of embryos while minimizing the many risks associated to the multiple pregnancies [7]. For this reason, an increasing amount of scientific societies and governments have encouraged [8] or even enforced [9, 10] elective single ET policies to ART clinics, progressively changing the benchmark of ART from pregnancy rates to Birth Emphasizing a Successful Singleton at Term (BESST) [11]. These considerations have set the stage for a new stance on embryo cryopreservation in modern-day medicine, which is no longer viewed as a simple adjuvant of fresh ET [12], a mindset that has transpired across to oocyte donation and/or embryo cryopreservation programs as well. In parallel, an increasing number of women are currently opting to electively cryopreserve oocytes in anticipation of age-related gamete exhaustion. Since the first live birth following the transfer of a cryopreserved oocyte occurred already in 1986 [13], physicians have the possibility to extrapolate from the abundance of data already existent from both fresh/frozen oocyte donation and embryo cryopreservation programs in order to determine the best ET strategy for women thawing electively cryopreserved oocytes. In this chapter, we give a detailed explanation on how the preparation of the uterus for the transfer of embryos deriving from cryopreserved oocytes is generally performed, followed by a brief overview of which methods one may consider to optimize the safety and pregnancy/neonatal outcomes of these treatment cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305(5936):707–9.

    Article  CAS  PubMed  Google Scholar 

  2. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984;42(2):293–6.

    Article  CAS  PubMed  Google Scholar 

  3. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, et al. A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod. 2008;23(9):1976–82.

    Article  CAS  PubMed  Google Scholar 

  4. Belva F, Bonduelle M, Roelants M, Verheyen G, Van Landuyt L. Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer. Hum Reprod. 2016;31(7):1610–20.

    Article  CAS  PubMed  Google Scholar 

  5. Belva F, Henriet S, Van den Abbeel E, Camus M, Devroey P, Van der Elst J, et al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod. 2008;23(10):2227–38.

    Article  CAS  PubMed  Google Scholar 

  6. Doody KJ. Cryopreservation and delayed embryo transfer-assisted reproductive technology registry and reporting implications. Fertil Steril. 2014;102(1):27–31.

    Article  PubMed  Google Scholar 

  7. Pandian Z, Marjoribanks J, Ozturk O, Serour G, Bhattacharya S. Number of embryos for transfer following in vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2013;7:CD003416.

    Google Scholar 

  8. Maheshwari A, Griffiths S, Bhattacharya S. Global variations in the uptake of single embryo transfer. Hum Reprod Update. 2011;17(1):107–20.

    Article  PubMed  Google Scholar 

  9. Peeraer K, Debrock S, Laenen A, De Loecker P, Spiessens C, De Neubourg D, et al. The impact of legally restricted embryo transfer and reimbursement policy on cumulative delivery rate after treatment with assisted reproduction technology. Hum Reprod. 2014;29(2):267–75.

    Article  CAS  PubMed  Google Scholar 

  10. Sundstrom P, Saldeen P. Cumulative delivery rate in an in vitro fertilization program with a single embryo transfer policy. Acta Obstet Gynecol Scand. 2009;88(6):700–6.

    Article  PubMed  Google Scholar 

  11. Min JK. What is the most relevant standard of success in assisted reproduction? The singleton, term gestation, live birth rate per cycle initiated: the BESST endpoint for assisted reproduction. Hum Reprod. 2004;19(1):3–7.

    Article  PubMed  Google Scholar 

  12. Blockeel C, Drakopoulos P, Santos-Ribeiro S, Polyzos NP, Tournaye H. A fresh look at the freeze-all protocol: a SWOT analysis. Hum Reprod. 2016;31(3):491–7.

    Article  PubMed  Google Scholar 

  13. Chen C. Pregnancy after human oocyte cryopreservation. Lancet. 1986;1(8486):884–6.

    Article  CAS  PubMed  Google Scholar 

  14. Younis JS, Simon A, Laufer N. Endometrial preparation: lessons from oocyte donation. Fertil Steril. 1996;66(6):873–84.

    Article  CAS  PubMed  Google Scholar 

  15. Navot D, Laufer N, Kopolovic J, Rabinowitz R, Birkenfeld A, Lewin A, et al. Artificially induced endometrial cycles and establishment of pregnancies in the absence of ovaries. N Engl J Med. 1986;314(13):806–11.

    Article  CAS  PubMed  Google Scholar 

  16. Soares SR, Troncoso C, Bosch E, Serra V, Simon C, Remohi J, et al. Age and uterine receptiveness: predicting the outcome of oocyte donation cycles. J Clin Endocrinol Metab. 2005;90(7):4399–404.

    Article  CAS  PubMed  Google Scholar 

  17. Nawroth F, Ludwig M. What is the 'ideal' duration of progesterone supplementation before the transfer of cryopreserved-thawed embryos in estrogen/progesterone replacement protocols? Hum Reprod. 2005;20(5):1127–34.

    Article  CAS  PubMed  Google Scholar 

  18. Escriba MJ, Bellver J, Bosch E, Sanchez M, Pellicer A, Remohi J. Delaying the initiation of progesterone supplementation until the day of fertilization does not compromise cycle outcome in patients receiving donated oocytes: a randomized study. Fertil Steril. 2006;86(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  19. Fritz MA, Speroff L. Regulation of the menstrual cycle. In: Fritz MA, Speroff L, editors. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Lippincott Williams and Wilkins; 2011. p. 199–242.

    Google Scholar 

  20. Boldt J, Cline D, McLaughlin D. Human oocyte cryopreservation as an adjunct to IVF-embryo transfer cycles. Hum Reprod. 2003;18(6):1250–5.

    Article  PubMed  Google Scholar 

  21. Revel A, Safran A, Laufer N, Lewin A, Reubinov BE, Simon A. Twin delivery following 12 years of human embryo cryopreservation: case report. Hum Reprod. 2004;19(2):328–9.

    Article  CAS  PubMed  Google Scholar 

  22. Givens CR, Markun LC, Ryan IP, Chenette PE, Herbert CM, Schriock ED. Outcomes of natural cycles versus programmed cycles for 1677 frozen-thawed embryo transfers. Reprod Biomed Online. 2009;19(3):380–4.

    Article  PubMed  Google Scholar 

  23. Imbar T, Hurwitz A. Synchronization between endometrial and embryonic age is not absolutely crucial for implantation. Fertil Steril. 2004;82(2):472–4.

    Article  PubMed  Google Scholar 

  24. Theodorou E, Forman R. Live birth after blastocyst transfer following only 2 days of progesterone administration in an agonadal oocyte recipient. Reprod Biomed Online. 2012;25(4):355–7.

    Article  PubMed  Google Scholar 

  25. van de Vijver A, Polyzos NP, Van Landuyt L, Mackens S, Stoop D, Camus M, et al. What is the optimal duration of progesterone administration before transferring a vitrified-warmed cleavage stage embryo? A randomized controlled trial. Hum Reprod. 2016;31(5):1097–104.

    Article  PubMed  Google Scholar 

  26. Gomaa H, Casper RF, Esfandiari N, Bentov Y. Non-synchronized endometrium and its correction in non-ovulatory cryopreserved embryo transfer cycles. Reprod Biomed Online. 2015;30(4):378–84.

    Article  PubMed  Google Scholar 

  27. Stoop D, De Munck N, Jansen E, Platteau P, Van den Abbeel E, Verheyen G, Devroey P. Clinical validation of a closed vitrification system in an oocyte-donation programme. Reprod Biomed Online. 2012;24(2):180–5.

    Article  PubMed  Google Scholar 

  28. Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25(9):2239–46.

    Article  PubMed  Google Scholar 

  29. Tournaye H, Gennady TS, Kahler E, Griesinger G. A Phase III randomized controlled trial comparing the efficacy, safety and tolerability of oral dydrogesterone versus micronized vaginal progesterone for luteal support in in vitro fertilization. Hum Reprod. 2017;32(5):1019–27.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zaqout M, Aslem E, Abuqamar M, Abughazza O, Panzer J, De Wolf D. The impact of oral intake of dydrogesterone on fetal heart development during early pregnancy. Pediatr Cardiol. 2015;36(7):1483–8.

    Article  PubMed  Google Scholar 

  31. Fatemi HM, Kyrou D, Bourgain C, Van den Abbeel E, Griesinger G, Devroey P. Cryopreserved-thawed human embryo transfer: spontaneous natural cycle is superior to human chorionic gonadotropin-induced natural cycle. Fertil Steril. 2010;94(6):2054–8.

    Article  CAS  PubMed  Google Scholar 

  32. Groenewoud ER, Cohlen BJ, Al-Oraiby A, Brinkhuis EA, Broekmans FJ, de Bruin JP, et al. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer. Hum Reprod. 2016;31(7):1483–92.

    Article  CAS  PubMed  Google Scholar 

  33. Weissman A, Horowitz E, Ravhon A, Steinfeld Z, Mutzafi R, Golan A, et al. Spontaneous ovulation versus HCG triggering for timing natural-cycle frozen-thawed embryo transfer: a randomized study. Reprod Biomed Online. 2011;23(4):484–9.

    Article  CAS  PubMed  Google Scholar 

  34. Montagut M, Santos-Ribeiro S, De Vos M, Polyzos NP, Drakopoulos P, Mackens S, et al. Frozen-thawed embryo transfers in natural cycles with spontaneous or induced ovulation: the search for the best protocol continues. Hum Reprod. 2016;31(12):2803–10.

    Article  CAS  PubMed  Google Scholar 

  35. Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5(4):e10258.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quenby S, Brosens JJ. Human implantation: a tale of mutual maternal and fetal attraction. Biol Reprod. 2013;88(3):81.

    Article  PubMed  Google Scholar 

  37. Mahajan N, Sharma S. The endometrium in assisted reproductive technology: how thin is thin? J Human Reprod Sci. 2016;9(1):3–8.

    Article  CAS  Google Scholar 

  38. Dain L, Bider D, Levron J, Zinchenko V, Westler S, Dirnfeld M. Thin endometrium in donor oocyte recipients: enigma or obstacle for implantation? Fertil Steril. 2013;100(5):1289–95.

    Article  PubMed  Google Scholar 

  39. Grunfeld L, Walker B, Bergh PA, Sandler B, Hofmann G, Navot D. High-resolution endovaginal ultrasonography of the endometrium: a noninvasive test for endometrial adequacy. Obstet Gynecol. 1991;78(2):200–4.

    CAS  PubMed  Google Scholar 

  40. Miwa I, Tamura H, Takasaki A, Yamagata Y, Shimamura K, Sugino N. Pathophysiologic features of “thin” endometrium. Fertil Steril. 2009;91(4):998–1004.

    Article  CAS  PubMed  Google Scholar 

  41. Lebovitz O, Orvieto R. Treating patients with “thin” endometrium—an ongoing challenge. Gynecol Endocrinol. 2014;30(6):409–14.

    Article  CAS  PubMed  Google Scholar 

  42. Polanski LT, Baumgarten MN, Quenby S, Brosens J, Campbell BK, Raine-Fenning NJ. What exactly do we mean by ‘recurrent implantation failure’? A systematic review and opinion. Reprod Biomed Online. 2014;28(4):409–23.

    Article  PubMed  Google Scholar 

  43. Yarali H, Polat M, Mumusoglu S, Yarali I, Bozdag G. Preparation of endometrium for frozen embryo replacement cycles: a systematic review and meta-analysis. J Assist Reprod Genet. 2016;33(10):1287–304.

    Article  PubMed  PubMed Central  Google Scholar 

  44. El-Toukhy T, Taylor A, Khalaf Y, Al-Darazi K, Rowell P, Seed P, et al. Pituitary suppression in ultrasound-monitored frozen embryo replacement cycles. A randomised study. Hum Reprod. 2004;19(4):874–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ghobara T, Vandekerckhove P. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev. 2008;1:CD003414.

    Google Scholar 

  46. Dal Prato L, Borini A, Cattoli M, Bonu MA, Sciajno R, Flamigni C. Endometrial preparation for frozen-thawed embryo transfer with or without pretreatment with gonadotropin-releasing hormone agonist. Fertil Steril. 2002;77(5):956–60.

    Article  PubMed  Google Scholar 

  47. Loh SKE, Ganesan G, Leong N, editors. Clomid versus hormone endometrial preparation in FET cycles 17th World Congress on Fertility and Sterility (IFFS); 2001; Melbourne.

    Google Scholar 

  48. Simon A, Hurwitz A, Zentner BS, Bdolah Y, Laufer N. Transfer of frozen-thawed embryos in artificially prepared cycles with and without prior gonadotrophin-releasing hormone agonist suppression: a prospective randomized study. Hum Reprod. 1998;13(1O):2712–7.

    Article  CAS  PubMed  Google Scholar 

  49. Glujovsky D, Pesce R, Fiszbajn G, Sueldo C, Hart RJ, Ciapponi A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst Rev. 2010;1:CD006359.

    Google Scholar 

  50. van de Vijver A, Polyzos NP, Van Landuyt L, De Vos M, Camus M, Stoop D, et al. Cryopreserved embryo transfer in an artificial cycle: is GnRH agonist down-regulation necessary? Reprod Biomed Online. 2014;29(5):588–94.

    Article  PubMed  Google Scholar 

  51. Akhtar MA, Sur S, Raine-Fenning N, Jayaprakasan K, Thornton JG, Quenby S. Heparin for assisted reproduction. Cochrane Database Syst Rev. 2013;8:CD009452.

    Google Scholar 

  52. Moffett A, Shreeve N. First do no harm: uterine natural killer (NK) cells in assisted reproduction. Hum Reprod. 2015;30(7):1519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robertson SA, Jin M, Yu D, Moldenhauer LM, Davies MJ, Hull ML, et al. Corticosteroid therapy in assisted reproduction—immune suppression is a faulty premise. Hum Reprod. 2016;31(10):2164–73.

    Article  PubMed  Google Scholar 

  54. Zhang XH, Liu ZZ, Tang MX, Zhang YH, Hu L, Liao AH. Morphological changes and expression of cytokine after local endometrial injury in a mouse model. Reprod Sci. 2015;22(11):1377–86.

    Article  CAS  PubMed  Google Scholar 

  55. Gnainsky Y, Granot I, Aldo P, Barash A, Or Y, Mor G, et al. Biopsy-induced inflammatory conditions improve endometrial receptivity: the mechanism of action. Reproduction. 2015;149(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  56. Nastri CO, Lensen SF, Gibreel A, Raine-Fenning N, Ferriani RA, Bhattacharya S, et al. Endometrial injury in women undergoing assisted reproductive techniques. Cochrane Database Syst Rev. 2015;3:CD009517.

    Google Scholar 

  57. Dunne C, Taylor B. Does endometrial injury improve implantation of frozen-thawed embryos? Arch Gynecol Obstet. 2014;290(3):575–9.

    Article  PubMed  Google Scholar 

  58. El-Toukhy T, Campo R, Khalaf Y, Tabanelli C, Gianaroli L, Gordts SS, et al. Hysteroscopy in recurrent in-vitro fertilisation failure (TROPHY): a multicentre, randomised controlled trial. Lancet. 2016;387(10038):2614–21.

    Article  PubMed  Google Scholar 

  59. Smit JG, Kasius JC, Eijkemans MJ, Koks CA, van Golde R, Nap AW, et al. Hysteroscopy before in-vitro fertilisation (inSIGHT): a multicentre, randomised controlled trial. Lancet. 2016;387(10038):2622–9.

    Article  PubMed  Google Scholar 

  60. Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  61. Diaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martinez-Conejero JA, Alama P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99(2):508–17.

    Article  PubMed  Google Scholar 

  62. Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Gomez E, Fernandez-Sanchez M, Carranza F, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril. 2013;100(3):818–24.

    Article  PubMed  Google Scholar 

  63. Ruiz-Alonso M, Galindo N, Pellicer A, Simon C. What a difference two days make: “personalized” embryo transfer (pET) paradigm: a case report and pilot study. Hum Reprod. 2014;29(6):1244–7.

    Article  CAS  PubMed  Google Scholar 

  64. Koot YE, van Hooff SR, Boomsma CM, van Leenen D, Groot Koerkamp MJ, Goddijn M, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep. 2016;6:19411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Storgaard M, Loft A, Bergh C, Wennerholm UB, Soderstrom-Anttila V, Romundstad LB, et al. Obstetric and neonatal complications in pregnancies conceived after oocyte donation—a systematic review and meta-analysis. BJOG. 2016;124(4):561–72.

    Article  PubMed  Google Scholar 

  66. Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Soderstrom-Anttila V, et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2013;19(2):87–104.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao J, Xu B, Zhang Q, Li YP. Which one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2016;14(1):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98(2):368–77e1–9.

    Article  PubMed  Google Scholar 

  69. Bloise E, Lin W, Liu X, Simbulan R, Kolahi KS, Petraglia F, et al. Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology. 2012;153(7):3457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P, Revelli A, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25(8):2039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mainigi MA, Olalere D, Burd I, Sapienza C, Bartolomei M, Coutifaris C. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth. Biol Reprod. 2014;90(2):26.

    Article  PubMed  Google Scholar 

  72. Kalra SK, Ratcliffe SJ, Coutifaris C, Molinaro T, Barnhart KT. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011;118(4):863–71.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Maheshwari A, Kalampokas T, Davidson J, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of blastocyst-stage versus cleavage-stage embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2013;100(6):1615–21e1–10.

    Article  PubMed  Google Scholar 

  74. Pelkonen S, Hartikainen AL, Ritvanen A, Koivunen R, Martikainen H, Gissler M, et al. Major congenital anomalies in children born after frozen embryo transfer: a cohort study 1995–2006. Hum Reprod. 2014;29(7):1552–7.

    Article  CAS  PubMed  Google Scholar 

  75. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–33.

    Article  PubMed  Google Scholar 

  76. Opdahl S, Henningsen AA, Tiitinen A, Bergh C, Pinborg A, Romundstad PR, et al. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod. 2015;30(7):1724–31.

    Article  CAS  PubMed  Google Scholar 

  77. Sazonova A, Kallen K, Thurin-Kjellberg A, Wennerholm UB, Bergh C. Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum Reprod. 2012;27(5):1343–50.

    Article  PubMed  Google Scholar 

  78. Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101(1):128–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shari Mackens M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mackens, S., van de Vijver, A., Santos-Ribeiro, S. (2018). Optimal Preparation Prior to the Use of Cryopreserved Oocytes. In: Stoop, D. (eds) Preventing Age Related Fertility Loss. Springer, Cham. https://doi.org/10.1007/978-3-319-14857-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14857-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14856-4

  • Online ISBN: 978-3-319-14857-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics