Skip to main content

Female Age and Reproductive Chances

  • Chapter
  • First Online:
Preventing Age Related Fertility Loss

Abstract

We currently live in an era of family planning and female work-force emancipation, while experiencing an ever-increasing lifespan. With this has come the freedom and ability to delay the age of childbearing and facilitate conception. However, for some women this delay may result in having to undergo assisted reproductive treatment (ART) to achieve pregnancy or even in the inability to conceive at all. While calendar, or ‘chronological age’ is very much related to biological or ‘reproductive age’, they can also represent separate entities. This means that while some women will be able to achieve a spontaneous pregnancy at age 35 without any problems, others may then have already missed their window of optimal opportunity. This chapter will cover the basic aspects of the reproductive physiology of the aging woman, as well as the demographics and consequences of postponed reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev. 1994;15(6):707–24.

    CAS  PubMed  Google Scholar 

  2. te Velde ER, Scheffer GJ, Dorland M, Broekmans FJ, Fauser BC. Developmental and endocrine aspects of normal ovarian aging. Mol Cell Endocrinol. 1998;145(1–2):67–73.

    Article  Google Scholar 

  3. Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42.

    Article  CAS  PubMed  Google Scholar 

  4. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30(5):465–93.

    Article  CAS  PubMed  Google Scholar 

  5. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963;158:417–33.

    Article  CAS  PubMed  Google Scholar 

  6. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Article  Google Scholar 

  7. Faddy MJ, Gosden RG. A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod. 1996;11(7):1484–6.

    Article  CAS  PubMed  Google Scholar 

  8. Bengtsson C, Lindquist O, Redvall L. Menstrual status and menopausal age of middle-aged Swedish women. A population study of women in Goteborg 1968–69 and 1974–75. Acta Obstet Gynecol Scand. 1981;60(3):269–75.

    Article  CAS  PubMed  Google Scholar 

  9. Treloar AE. Menstrual cyclicity and the pre-menopause. Maturitas. 1981;3(3–4):249–64.

    Article  CAS  PubMed  Google Scholar 

  10. Luoto R, Kaprio J, Uutela A. Age at natural menopause and sociodemographic status in Finland. Am J Epidemiol. 1994;139(1):64–76.

    Article  CAS  PubMed  Google Scholar 

  11. Handyside AH. Molecular origin of female meiotic aneuploidies. Biochim Biophys Acta. 2012;1822(12):1913–20.

    Article  CAS  PubMed  Google Scholar 

  12. Pan H, Ma P, Zhu W, Schultz RM. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol. 2008;316(2):397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiang T, Schultz RM, Lampson MA. Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes. Biol Reprod. 2011;85(6):1279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurahashi H, Tsutsumi M, Nishiyama S, Kogo H, Inagaki H, Ohye T. Molecular basis of maternal age-related increase in oocyte aneuploidy. Congenit Anom (Kyoto). 2012;52(1):8–15.

    Article  CAS  Google Scholar 

  15. MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and aneuploidy. Semin Cell Dev Biol. 2015;45:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hassold T, Hunt PA, Sherman S. Trisomy in humans: incidence, origin and etiology. Curr Opin Genet Dev. 1993;3(3):398–403.

    Article  CAS  PubMed  Google Scholar 

  17. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herbert M, Kalleas D, Cooney D, Lamb M, Lister L. Meiosis and maternal aging: insights from aneuploid oocytes and trisomy births. Cold Spring Harb Perspect Biol. 2015;7(4):a017970.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ata B, Kaplan B, Danzer H, Glassner M, Opsahl M, Tan SL, et al. Array CGH analysis shows that aneuploidy is not related to the number of embryos generated. Reprod Biomed Online. 2012;24(6):614–20.

    Article  CAS  PubMed  Google Scholar 

  20. Demko ZP, Simon AL, McCoy RC, Petrov DA, Rabinowitz M. Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening. Fertil Steril. 2016;105(5):1307–13.

    Article  CAS  PubMed  Google Scholar 

  21. Kornafel KL, Sauer MV. Increased rates of aneuploidy in older women. Increased rates of aneuploidy do not occur in gestations of older embryo recipients. Hum Reprod. 1994;9(11):1981–2.

    Article  CAS  PubMed  Google Scholar 

  22. Hart RJ. Physiological aspects of female fertility: role of the environment, modern lifestyle, and genetics. Physiol Rev. 2016;96(3):873–909.

    Article  PubMed  Google Scholar 

  23. Suganuma N, Kitagawa T, Nawa A, Tomoda Y. Human ovarian aging and mitochondrial DNA deletion. Horm Res. 1993;39(Suppl 1):16–21.

    Article  CAS  PubMed  Google Scholar 

  24. Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol. 2014;12:111.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tawfik H, Kline J, Jacobson J, Tehranifar P, Protacio A, Flom JD, et al. Life course exposure to smoke and early menopause and menopausal transition. Menopause. 2015;22(10):1076–83.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tarin JJ, Perez-Albala S, Cano A. Oral antioxidants counteract the negative effects of female aging on oocyte quantity and quality in the mouse. Mol Reprod Dev. 2002;61(3):385–97.

    Article  CAS  PubMed  Google Scholar 

  27. Ge ZJ, Schatten H, Zhang CL, Sun QY. Oocyte ageing and epigenetics. Reproduction. 2015;149(3):R103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Butler L, Santoro N. The reproductive endocrinology of the menopausal transition. Steroids. 2011;76(7):627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Zonneveld P, Scheffer GJ, Broekmans FJ, Blankenstein MA, de Jong FH, Looman CW, et al. Do cycle disturbances explain the age-related decline of female fertility? Cycle characteristics of women aged over 40 years compared with a reference population of young women. Hum Reprod. 2003;18(3):495–501.

    Article  PubMed  Google Scholar 

  30. Soules MR, Sherman S, Parrott E, Rebar R, Santoro N, Utian W, et al. Stages of reproductive aging workshop (STRAW). J Womens Health Gend Based Med. 2001;10(9):843–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lisabeth L, Harlow S, Qaqish B. A new statistical approach demonstrated menstrual patterns during the menopausal transition did not vary by age at menopause. J Clin Epidemiol. 2004;57(5):484–96.

    Article  PubMed  Google Scholar 

  32. Schwartz D, Mayaux MJ. Female fecundity as a function of age: results of artificial insemination in 2193 nulliparous women with azoospermic husbands. Federation CECOS. N Engl J Med. 1982;306(7):404–6.

    Article  CAS  PubMed  Google Scholar 

  33. van Noord-Zaadstra BM, Looman CW, Alsbach H, Habbema JD, te Velde ER, Karbaat J. Delaying childbearing: effect of age on fecundity and outcome of pregnancy. BMJ. 1991;302(6789):1361–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eijkemans MJ, van Poppel F, Habbema DF, Smith KR, Leridon H, te Velde ER. Too old to have children? Lessons from natural fertility populations. Hum Reprod. 2014;29(6):1304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Habbema JD, Eijkemans MJ, Leridon H, te Velde ER. Realizing a desired family size: when should couples start? Hum Reprod. 2015;30(9):2215–21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nybo Andersen AM, Wohlfahrt J, Christens P, Olsen J, Melbye M. Maternal age and fetal loss: population based register linkage study. BMJ. 2000;320(7251):1708–12.

    Article  CAS  PubMed  Google Scholar 

  37. Lathi RB, Gray Hazard FK, Heerema-McKenney A, Taylor J, Chueh JT. First trimester miscarriage evaluation. Semin Reprod Med. 2011;29(6):463–9.

    Article  PubMed  Google Scholar 

  38. Hecht CA, Hook EB. Rates of Down syndrome at livebirth by one-year maternal age intervals in studies with apparent close to complete ascertainment in populations of European origin: a proposed revised rate schedule for use in genetic and prenatal screening. Am J Med Genet. 1996;62(4):376–85.

    Article  CAS  PubMed  Google Scholar 

  39. Hulten MA, Patel S, Jonasson J, Iwarsson E. On the origin of the maternal age effect in trisomy 21 Down syndrome: the Oocyte Mosaicism Selection model. Reproduction. 2010;139(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  40. Cuckle HS, Wald NJ, Thompson SG. Estimating a woman’s risk of having a pregnancy associated with Down’s syndrome using her age and serum alpha-fetoprotein level. Br J Obstet Gynaecol. 1987;94(5):387–402.

    Article  CAS  PubMed  Google Scholar 

  41. Cuckle HS. Primary prevention of Down’s syndrome. Int J Med Sci. 2005;2(3):93–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mutton D, Alberman E, Hook EB. Cytogenetic and epidemiological findings in Down syndrome, England and Wales 1989 to 1993. National Down Syndrome Cytogenetic Register and the Association of Clinical Cytogeneticists. J Med Genet. 1996;33(5):387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Check JH, Cohen R. Evidence that oocyte quality in younger women with diminished oocyte reserve is superior to those of women of advanced reproductive age. Med Hypotheses. 2010;74(2):264–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hsu A, Arny M, Knee AB, Bell C, Cook E, Novak AL, et al. Antral follicle count in clinical practice: analyzing clinical relevance. Fertil Steril. 2011;95(2):474–9.

    Article  PubMed  Google Scholar 

  45. Sauer MV, Paulson RJ, Lobo RA. Oocyte donation to women of advanced reproductive age: pregnancy results and obstetrical outcomes in patients 45 years and older. Hum Reprod. 1996;11(11):2540–3.

    Article  CAS  PubMed  Google Scholar 

  46. Gougeon A, Ecochard R, Thalabard JC. Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod. 1994;50(3):653–63.

    Article  CAS  PubMed  Google Scholar 

  47. Hansen KR, Hodnett GM, Knowlton N, Craig LB. Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil Steril. 2011;95(1):170–5.

    Article  PubMed  Google Scholar 

  48. Kevenaar ME, Meerasahib MF, Kramer P, van de Lang-Born BM, de Jong FH, Groome NP, et al. Serum anti-Mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology. 2006;147(7):3228–34.

    Article  CAS  PubMed  Google Scholar 

  49. Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, et al. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19(8):519–27.

    Article  CAS  PubMed  Google Scholar 

  50. Broer SL, Broekmans FJ, Laven JS, Fauser BC. Anti-Mullerian hormone: ovarian reserve testing and its potential clinical implications. Hum Reprod Update. 2014;20:688–701.

    Article  CAS  PubMed  Google Scholar 

  51. Seifer DB, MacLaughlin DT, Christian BP, Feng B, Shelden RM. Early follicular serum Mullerian-inhibiting substance levels are associated with ovarian response during assisted reproductive technology cycles. Fertil Steril. 2002;77(3):468–71.

    Article  PubMed  Google Scholar 

  52. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.

    Article  CAS  PubMed  Google Scholar 

  53. Broer SL, van Disseldorp J, Broeze KA, Dolleman M, Opmeer BC, Bossuyt P, et al. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update. 2013;19(1):26–36.

    Article  PubMed  Google Scholar 

  54. Depmann M, Broer SL, van der Schouw YT, Tehrani FR, Eijkemans MJ, Mol BW, et al. Can we predict age at natural menopause using ovarian reserve tests or mother’s age at menopause? A systematic literature review. Menopause. 2016;23:224–32.

    Article  PubMed  Google Scholar 

  55. Steiner AZ, Herring AH, Kesner JS, Meadows JW, Stanczyk FZ, Hoberman S, et al. Antimullerian hormone as a predictor of natural fecundability in women aged 30–42 years. Obstet Gynecol. 2011;117(4):798–804.

    Article  CAS  PubMed  Google Scholar 

  56. van Montfrans JM, van Hooff MH, Huirne JA, Tanahatoe SJ, Sadrezadeh S, Martens F, et al. Basal FSH concentrations as a marker of ovarian ageing are not related to pregnancy outcome in a general population of women over 30 years. Hum Reprod. 2004;19(2):430–4.

    Article  PubMed  Google Scholar 

  57. Ripley M, Lanes A, Leveille MC, Shmorgun D. Does ovarian reserve predict egg quality in unstimulated therapeutic donor insemination cycles? Fertil Steril. 2015;103(5):1170–5. e2

    Article  PubMed  Google Scholar 

  58. Zarek SM, Mitchell EM, Sjaarda LA, Mumford SL, Silver RM, Stanford JB, et al. Is anti-Mullerian hormone associated with fecundability? Findings from the EAGeR Trial. J Clin Endocrinol Metab. 2015;100(11):4215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Streuli I, de Mouzon J, Paccolat C, Chapron C, Petignat P, Irion OP, et al. AMH concentration is not related to effective time to pregnancy in women who conceive naturally. Reprod Biomed Online. 2014;28(2):216–24.

    Article  CAS  PubMed  Google Scholar 

  60. van der Stroom EM, Konig TE, van Dulmen-den Broeder E, Elzinga WS, van Montfrans JM, Haadsma ML, et al. Early menopause in mothers of children with Down syndrome? Fertil Steril. 2011;96(4):985–90.

    Article  PubMed  Google Scholar 

  61. Freeman SB, Yang Q, Allran K, Taft LF, Sherman SL. Women with a reduced ovarian complement may have an increased risk for a child with Down syndrome. Am J Hum Genet. 2000;66(5):1680–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haadsma ML, Mooij TM, Groen H, Burger CW, Lambalk CB, Broekmans FJ, et al. A reduced size of the ovarian follicle pool is associated with an increased risk of a trisomic pregnancy in IVF-treated women. Hum Reprod. 2010;25(2):552–8.

    Article  CAS  PubMed  Google Scholar 

  63. Plante BJ, Beamon C, Schmitt CL, Moldenhauer JS, Steiner AZ. Maternal antimullerian hormone levels do not predict fetal aneuploidy. J Assist Reprod Genet. 2010;27(7):409–14.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Honorato TC, Henningsen AA, Haadsma ML, Land JA, Pinborg A, Lidegaard O, et al. Follicle pool, ovarian surgery and the risk for a subsequent trisomic pregnancy. Hum Reprod. 2015;30(3):717–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. de Kat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Kat, A.C., Broekmans, F.J.M. (2018). Female Age and Reproductive Chances. In: Stoop, D. (eds) Preventing Age Related Fertility Loss. Springer, Cham. https://doi.org/10.1007/978-3-319-14857-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14857-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14856-4

  • Online ISBN: 978-3-319-14857-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics