Advertisement

Tissue Bank and Tissue Engineering

  • Ferdiansyah MahyudinEmail author
  • Heri Suroto
Chapter
  • 1.4k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 58)

Abstract

Permanent damage on the tissue or organ are still a major problem and chalenge to be solved in the world of medicine. Humankind has tried to solve the problem using technologies available in their respective era since long time ago. We can read from various literature about the efforts already made to replace and consequently heal the damaged tissue or organ. Tissue or organ damage caused by war and many other causes became the main reason of the tissue bank's estabilishment in many parts of the earth. Tissue bank strife to provide safe and high quality products to be used as natural biomaterial for damaged tissue reconstruction in patients. Several processes started from procurement, processing, and finally sterilization has been done to guarantee safe and useful products for the patients in need. In line with the recent technological advancement, especially with the introduction of stem cell usage, tissue and organ reconstruction has entered a new era that will bring greater hope for patients. If the previous methods that used biomaterial only employ dead tissue in the reconstruction procedures, tissue engineering will make the combination between stem cell and biomaterial as scaffold possible, thus enabling the living tissue to be used in reconstruction. This method, albeit still in the process of research, is expected to yield better results.

Keywords

Tissue and organ damage Biomaterial Tissue bank Stem cells Tissue engineering 

Notes

Acknowledgment

The authors acknowledge the supports from Dr. Soetomo General Hospital, Surabaya and the Indonesian Ministry of Health. We thank Dr. Hermawan, Laval University for the discussion and revision during the preparation of this chapter.

References

  1. Anderson, M. W., & Trias, E. (2009). Chapter 2: Recruitment for tissue donation. In R. M. Warwick, D. Fehily, S. A. Brubaker & T. Eastlund (Eds.), Tissue and cell donation an essential guide. Sussex: Blackwell Publishing Ltd.Google Scholar
  2. Ang, G. C. (2005). History of skin transplantation. Clinics in Dermatology, 23, 320–324.CrossRefGoogle Scholar
  3. Ayres, C. E., Jha, B. S., Sell, S. A., Bowlin, G. L., & Simpson, D. G. (2010). Nanotechnology in the design of soft tissue scaffolds: Innovations in structure and function. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2, 20–34.CrossRefGoogle Scholar
  4. Badylak, S. F., Taylor, D., & Uygun, K. (2011). Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering, 13, 27–53.CrossRefGoogle Scholar
  5. Bus, M. P., Bramer, J. A., Schaap, G. R., Schreuder, H. W., Jutte, P. C., van der Geest, I. C., et al. (2015). Hemicortical resection and inlay allograft reconstruction for primary bone tumors: A retrospective evaluation in the Netherlands and review of the literature. Journal of Bone and Joint Surgery. American Volume, 97, 738–750.CrossRefGoogle Scholar
  6. Bus, M. P., Dijkstra, P. D., van de Sande, M. A., Taminiau, A. H., Schreuder, H. W., Jutte, P. C., et al. (2014). Intercalary allograft reconstructions following resection of primary bone tumors: A nationwide multicenter study. Journal of Bone and Joint Surgery. American Volume, 96, e26.CrossRefGoogle Scholar
  7. Coburn, J. C., & Pandit, A. (2007). Chapter 4: Development of naturally-derived biomaterials and optimization of their biomechanical properties. In N. Ashammakhi, R. Reis & E. Chiellini (Eds.), Topics in tissue engineering. Google Scholar
  8. Crubézy, E., Murail, P., Girard, L., Bernadou, J.P. (1998). False teeth of the roman world. Nature 391(6662), 29.Google Scholar
  9. Dimitriou, R., Mataliotakis, G. I., Angoules, A. G., Kanakaris, N. K., & Giannoudis, P. V. (2011). Complications following autologous bone graft harvesting from the iliac crest and using the RIA: A systematic review. Injury, 42, S3–S15.CrossRefGoogle Scholar
  10. Dornish, M., Kaplan, D., & Skaugrud, O. (2001). Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides. American Society for Testing and Materials. Annals of the New York Academy of Sciences, 944, 388–397.CrossRefGoogle Scholar
  11. Douville, F., Godin, G., & Vézina-Im, L.-A. (2014). Organ and tissue donation in clinical settings: A systematic review of the impact of interventions aimed at health professionals. Transplantation Research, 3, 8.CrossRefGoogle Scholar
  12. Ebraheim, N. A., Elgafy, H., & Xu, R. (2001). Bone-graft harvesting from iliac and fibular donor sites: Techniques and complications. Journal of American Academy of Orthopaedic Surgeons, 9, 210–218.Google Scholar
  13. Ferdiansyah. (2007). Chapter 22: Use of freeze-dried irradiated bones in orthopedic surgery. In A. Nather, N. Yusof & N. Hilmy (Eds.), Radiation in tissue banking basic science and clinical applications of irradiated tissue allografts. Singapore: World Scientific Publishing Co. Pte. Ltd.Google Scholar
  14. Ferdiansyah. (2010). Reconstruction of large bone defect using composite of bovine hydroxyapatite and bone marrow mesenchymal stem cells. Doctoral: Airlangga University Surabaya Indonesia.Google Scholar
  15. Finkemeier, C. G. (2002). Bone-grafting and bone-graft substitutes. Journal of Bone Joint Surgery American, 84-A, 454–464.Google Scholar
  16. Gevers, S., Janssen, A., & Friele, R. (2004). Consent systems for post mortem organ donation in Europe. European Journal of Health Law, 11, 175–186.CrossRefGoogle Scholar
  17. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27, 3675–3683.Google Scholar
  18. Greenwald, A. S., Boden, S. D., Goldberg, V. M., Khan, Y., Laurencin, C. T., Rosier, R. N., & American Academy of Orthopaedic Surgeons. The Committee on Biological, I. (2001). Bone-graft substitutes: Facts, fictions, and applications. Journal of Bone Joint Surgery American, 83-A(Suppl 2 Pt 2), 98–103.Google Scholar
  19. Gruskin, E., Doll, B. A., Futrell, F. W., Schmitz, J. P., & Hollinger, J. O. (2012). Demineralized bone matrix in bone repair: History and use. Advanced Drug Delivery Reviews, 64, 1063–1077.CrossRefGoogle Scholar
  20. Hollister, S. J., & Murphy, W. L. (2011). Scaffold translation: Barriers between concept and clinic. Tissue Eng Part B Rev, 17, 459–474.CrossRefGoogle Scholar
  21. Hutchison, D. R. (2016). The legal and regulatory framework for tissues and cells in the European union. In Phillips, G. O. (Ed.) Legal basis of global tissue banking a proactive clinical perspective. Singapore: World Scientific Publishing.Google Scholar
  22. Illingworth, K. D., Mihalko, W. M., Parvizi, J., Sculco, T., McArthur, B., el Bitar, Y., & Saleh, K. J. (2013). How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: A multicenter approach: AAOS exhibit selection. Journal of Bone and Joint Surgery. American Volume, 95, e50.CrossRefGoogle Scholar
  23. Kearney, J. N. (2010). Chapter 7: Storage, processing and preservation. In G. Galea (Ed.) Essentials of tissue banking. Heidelberg: Springer.Google Scholar
  24. Klimanskaya, I., Kimbrel, E. A., & Lanza, R. (2014). Chapter 29: Embryonic stem cells. In R. Lanza, R. Langer & J. Vacanti (Eds.), Principles of tissue engineering (4th ed.). London: Elsevier.Google Scholar
  25. Kular, J. K., Basu, S., & Sharma, R. I. (2014). The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of Tissue Engineering, 5:2041731414557112.Google Scholar
  26. Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., & Park, W. H. (2009). Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 61, 1020–1032.CrossRefGoogle Scholar
  27. Lee, H., H. J. C., Park, T. G. (2011). Chapter 31: Design principles in biomaterials and scaffolds. In A. Atala, R. Lanza, J. A., Thomson & R. Nerem (Eds.), Principles of regenerative medicine (2nd ed.). London: Elsevier.Google Scholar
  28. Li, M. D., Atkins, H., & Bubela, T. (2014). The global landscape of stem cell clinical trials. Regenerative Medicine, 9, 27–39.CrossRefGoogle Scholar
  29. Loeffler, B. J., Kellam, J. F., Sims, S. H., & Bosse, M. J. (2012). Prospective observational study of donor-site morbidity following anterior iliac crest bone-grafting in orthopaedic trauma reconstruction patients. Journal of Bone and Joint Surgery. American Volume, 94, 1649–1654.CrossRefGoogle Scholar
  30. Meehan, J. P., Danielsen, B., Kim, S. H., Jamali, A. A., & White, R. H. (2014). Younger age is associated with a higher risk of early periprosthetic joint infection and aseptic mechanical failure after total knee arthroplasty. Journal of Bone and Joint Surgery. American Volume, 96, 529–535.CrossRefGoogle Scholar
  31. Meyer, U. (2009). The history of tissue engineering and regenerative medicine in perspective. In U. Meyer, T. Meyer, J. Handschel & Wiesmann H. P. (Eds.), Fundamentals of Tissue Engineering and Regenerative Medicine. Heidelberg: Springer.Google Scholar
  32. Mirsadraee, S., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Hunt, J., Fisher, J., & Ingham, E. (2007). Biocompatibility of acellular human pericardium. Journal of Surgical Research, 143, 407–414.CrossRefGoogle Scholar
  33. Moroni, L., Schrooten, J., Truckenmüller, R., Rouwkema, J., Sohier, J., & Blitterswijk, C. A. V. (2015). Chapter: Tissue engineering: An introduction. In Blitterswijk, C. A. V., & Boer, J. D. (Eds.), Tissue engineering (2nd ed.). London: Elsevier.Google Scholar
  34. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32, 773–785.CrossRefGoogle Scholar
  35. Muscolo, D. L., Ayerza, M. A., Aponte-Tinao, L. A., & Ranalletta, M. (2006). Use of distal femoral osteoarticular allografts in limb salvage surgery: Surgical technique. JBJS Essential Surgical Techniques, os-88, 305–321.Google Scholar
  36. Myeroff, C., & Archdeacon, M. (2011). Autogenous bone graft: Donor sites and techniques. Journal of Bone and Joint Surgery. American Volume, 93, 2227–2236.CrossRefGoogle Scholar
  37. Nather, A., & Tay, L. M. (2010). Chapter 22: Processing of bone and musculoskeletal soft tissue allografts. In A. Nather, N. Yusof & N. Hilmy (Eds.), Allograft procurement, processing and transplantation a comprehensive guide for tissue bank. Singapore: World Scientific.Google Scholar
  38. Nather, A., Yusof, N., Hilmy, N., Kang, Y. -K., Gajiwala, A. L., & Ireland, L. (2007). Asia pacific association for surgical tissue banks standards for tissue banking.Google Scholar
  39. Nather, A., & Zheng, S. (2010). Chapter 1: Evolution of allograft transplantation. In Nather, A., Yusof, N., & Hilmy, N. (Eds.), Allograft procurement, processing and transplantation a comprehensive guide for tissue bank. Singapore: World Scientific.Google Scholar
  40. Navarro, A. (2010). Chapter 2: Deceased donors of tissue. In G. Galea (Ed.) Essentials of tissue banking. Heidelberg: Springer.Google Scholar
  41. Navarro, M., Michiardi, A., Castano, O., & Planell, J. A. (2008). Biomaterials in orthopaedics. Journal of the Royal Society, Interface, 5, 1137–1158.CrossRefGoogle Scholar
  42. Nerem, R. M., & Schutte, S. C. (2014). Chapter 2: The challenge of imitating nature. In R. Lanza, R. Langer & J. Vacanti (Eds.), Principles of tissue engineering (4th ed.). London: Elsevier.Google Scholar
  43. Nichter, L., Morgan, R., & Nichter, M. (1983). The impact of of Indian method for total nasal reconstruction. Clinics in Plastic Surgery, 10, 635–647.Google Scholar
  44. Nijkamp, M. D., Hollestelle, M. L., Zeegers, M. P., van den Borne, B., & Reubsaet, A. (2008). To be(come) or not to be(come) an organ donor, that’s the question: a meta-analysis of determinant and intervention studies. Health Psychology Review, 2, 20–40.CrossRefGoogle Scholar
  45. Nimni, M. E., Cheung, D., Strates, B., Kodama, M., & Sheikh, K. (1987). Chemically modified collagen: A natural biomaterial for tissue replacement. Journal of Biomedical Materials Research, 21, 741–771.CrossRefGoogle Scholar
  46. Pare, A. (1634). The works of that famous Chirurgion Ambrose Parey. London: Cotes and Young.Google Scholar
  47. Pfeffer, N. (2009). Chapter 1: Histories of tissue banking. In R. M. Warwick, D. Fehily, S. A. Brubaker & T. Eastlund, T. (Eds.), Tissue and cell donation an essential guide. Sussex: Blackwell Publishing Ltd.Google Scholar
  48. Phillips, G. (1998a). Modul 0: Historical background. In G. Phillips (Ed.), Multi-media distance learning package on tissue banking. Singapore: National University of Singapore, IAEA/NUS Regional Training Center (RCA).Google Scholar
  49. Phillips, G. O. (1998b). Module 1: Rules and regulations. In G. O. Phillips (Ed.), Multi-media distance learning package on tissue banking. Singapore: National University of Singapore, IAEA/NUS Regional Training Center (RCA).Google Scholar
  50. Phillips, G. O. (1998c). Module 4: Procurement. In Phillips, G. O. (Ed.), Multi-media distance learning package on tissue banking. Singapore: National University of Singapore, IAEA/NUS Regional Training Center (RCA).Google Scholar
  51. Phillips, G. O. (1998d). Module 5: Processing. In Phillips, G. O. (Ed.), Multi-media distance learning package on tissue banking. Singapore: National University of Singapore, IAEA/NUS Regional Training Center (RCA).Google Scholar
  52. Phillips, G. O. (Ed.). (2003). IAEA international standards for tissue banks. Singapore: World Scientific Publishing Co., Pte. Ltd.Google Scholar
  53. Phillips, G. O. (2016). Introduction: From a cottage industry to a global business. In G. O. Phillips (Ed.), Global tissue banking legal basis of a proactive clinical perspective. Singapore: World Scientific.Google Scholar
  54. Pradhan, S., & Farach-Carson, M. C. (2010). Mining the extracellular matrix for tissue engineering applications. Regen Med, 5, 961–970.CrossRefGoogle Scholar
  55. Rid, A., & Dinhofer, L. (2009). Consent. In R. M. Warwick, D. Fehily, S. A. Brubaker & T. Eastlund (Eds.), Tissue and cell donation an essential guide. Sussex: Blackwell Publishing Ltd.Google Scholar
  56. Rithalia, A., McDaid, C., Suekarran, S., Norman, G., & Myers, L. (2009). A systematic review of presumed consent systems for deceased organ donation. Health Technology Assessment, 13, 118.CrossRefGoogle Scholar
  57. Russell, A.J., & Bertram, T. (2014). Chapter 5: Moving into the clinic. In R. Lanza, R. Langer & J. Vacanti (Eds.), Principles of tissue engineering (4th ed). London: Elsevier.Google Scholar
  58. Samadikuchaksaraei, A., Lecht, S., Lelkes, P. I., Mantalaris, A., & Polak, J. M. (2014). Stem cells as building blocks. In R. Lanza, R. Langer & J. Vacanti (Eds.), Principles of tissue engineering (4th ed.). London Elsevier.Google Scholar
  59. Shelton, W. R., & Fagan, B. C. (2011). Autografts commonly used in anterior cruciate ligament reconstruction. Journal of American Academy of Orthopaedic Surgeons, 19, 259–264.Google Scholar
  60. Shelton, W. R., Treacy, S. H., Dukes, A. D., & Bomboy, A. L. (1998). Use of allografts in knee reconstruction: I. Basic science aspects and current status. Journal of American Academy of Orthopaedic Surgeons, 6, 165–168.Google Scholar
  61. Shenghui, H., Nakada, D., & Morrison, S. J. (2009). Mechanisms of stem cell self-renewal. Annual Review of Cell and Developmental Biology, 25, 377–406.CrossRefGoogle Scholar
  62. Shin, S. H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H. W. (2012). A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of Tissue Engineering, 3, 2041731412443530.CrossRefGoogle Scholar
  63. Stock, U. A., & Vacanti, J. P. (2001). Tissue engineering: Current state and prospects. Annual Review of Medicine, 52, 443–451.CrossRefGoogle Scholar
  64. Suroto, H. (2011). Efficacy of composite freeze-dried tendon allograft for rconstrction flexor tendon defect. Airlangga University Surabaya Indonesia.Google Scholar
  65. Szentivanyi, A. L., Zernetsch, H., Menzel, H., & Glasmacher, B. (2011). A review of developments in electrospinning technology: New opportunities for the design of artificial tissue structures. International Journal of Artificial Organs, 34, 986–997.CrossRefGoogle Scholar
  66. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefGoogle Scholar
  67. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefGoogle Scholar
  68. Vacanti, C. A. (2006). History of tissue engineering and a glimpse into its future. Tissue Engineering, 12, 1137–1142.CrossRefGoogle Scholar
  69. Vacanti, J. P., & Vacanti, C. A. 2014. Chapter 1: The history and scope of tissue engineering. In R. Lanza, R. Langer & J. Vacanti, J. (Eds.), Principles of tissue engineering (4th edn.). London: Elsevier.Google Scholar
  70. Vinci, M. C., Tessitore, G., Castiglioni, L., Prandi, F., Soncini, M., Santoro, R., et al. (2013). Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium. PLoS ONE, 8, e64769.CrossRefGoogle Scholar
  71. Warwick, R. (2010). Chapter 1: Live donors of tissue. In G. Galea (Ed.), Essentials of tissue banking. Heidelberg: Springer.Google Scholar
  72. Wiesmann, H. P., & Meyer, U. (2009). Biomaterials. In U. Meyer, T. Meyer, Handschel, J. & Wiesmann, H. P. (Eds.), Fundamentals of tissue engineering and regenerative medicine. Heidelberg: Springer.Google Scholar
  73. Yusof, N., & Hilmy, N. (2010). Chapter 24: Principle concepts of radiation sterilization fo tissue allograft. In A. Nather, N. Yusof & N. Hilmy (Eds.), Allograft procurement, processing and transplantation a comprehensive guide for tissue bank. Singapore: World Scientific.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Airlangga UniversitySurabayaIndonesia

Personalised recommendations