Advertisement

Biomaterials in Dentistry

  • Margareta RinastitiEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 58)

Abstract

Dental materials are used for the replacement of destroyed or lost structures and for the restoration of disturbed functions of the orofacial organ (hard tooth substance, teeth, and soft tissues of the mouth). Among the main challenges in restorative dentistry in Indonesia are the caries, recurrent caries due to the leakage or restoration failure  that may lead to infection of the pulp and periodontal tissue. Therefore, it is desirable to develop dental materials having ability to seal the marginal interface between material and tooth structure, bioactivity to promote remineralization and good bonding with tooth structure and antimicrobial capabilities. This chapter describes dental materials in restorative dentistry, the most common dental problems in Indonesia, and the development of local bioactive dental materials by utilizing the diversity of natural resources in Indonesia.

Keywords

Biomaterials caries dental restorative material operative dentistry natural material 

Notes

Acknowledgment

The author thanks Dr. Hermawan, Laval University, for the discussion during the preparation of this chapter and revision of the final manuscript.

References

  1. Albertsson, K., Persson, A., & van Dijken, J. (2012). Effect of essential oils containing and alcohol-free chlorhexidine mouthrinses on cariogenic micro-organisms in human saliva. Acta Odontologica Scandinavica, 71, 883–891.CrossRefGoogle Scholar
  2. Alonso, R. C. B., Correr, G. M., Borges, A. F. S., Kantovitz, K. R., & Rontani, R. M. P. (2005). Minimally invasive dentistry: Bond strength of different sealant and filling materials to enamel. Oral Health and Preventive Dentistry, 3, 87–95.Google Scholar
  3. American Dental Association Council on Scientific Affairs. (2006). Professionally applied topical fluoride: Evidence-based clinical recommendations. The Journal of the American Dental Association, 137, 1151–1159.Google Scholar
  4. Amirouche-Korichi, A., Mouzali, M., & Watts, D. (2009). Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dental Materials, 25, 1411–1418.CrossRefGoogle Scholar
  5. Ardhani, R., Susilowati, R., & Ana, I. D. (2015). Functional recovery of axonal injury induced by gelatin-hydrogel film and PRP: An Initial Study in Rats. Journal of Biomedical Science and Engineering, 8, 160–169.CrossRefGoogle Scholar
  6. Atai, M., Nekoomanesh, M., Hashemi, S. A., & Amani, S. (2004). Physical and mechanical properties of an experimental dental composite based on a new monomer. Dental Materials, 20, 663–668.CrossRefGoogle Scholar
  7. Barnett, M. L. (2006). The rationale for the daily use of an antimicrobial mouthrinse. Journal of the American Dental Association, 137, S16–S21.CrossRefGoogle Scholar
  8. Beauchamp, J,, Caufield, P. W., Crall, J. J., Donly, K., Feigal, R., Gooch, B., Ismail, A., Kohn, W., Siegal, M., & Simonsen, R. (2008). Evidence-based clinical recommendations for the use of pit-and-fissure sealants. The Journal of the American Dental Association, 139, 257–268.Google Scholar
  9. Beun, S., Bailly, C., Devaux, J., & Leloup, G. (2012). Physical, mechanical and rheological characterization of resin-based pit and fissure sealants compared to flowable resin composites. Dental Materials, 28, 349–359.CrossRefGoogle Scholar
  10. Bouschlicher, M. R., Reindhardt, J. W., & Vargas, M. A. (1997). Surface treatment techniques for resin composite repair. American Journal of Dentistry, 10, 279–283.Google Scholar
  11. Bowen, R. L., & Marjenhoff, W. (1992). Dental composites/glass ionomers: The materials. Advances in Dental Research, 6, 44–49.Google Scholar
  12. Cappeli, D., & Mobley, C. (2007). Prevention in clinical oral health care (7th ed.). Philadelphia: Elssevier.Google Scholar
  13. Considine, G. (2005). Dental Materials. Van Nostrand’s Scientific Encyclopedia. John Wiley & Sons.Google Scholar
  14. Department of Research and Development. (2013). “Riset Kesehatan Dasar” (Basic Health Research). Jakarta, Indonesian Ministry of Health.Google Scholar
  15. Dewanto, I., & Lestari, N. (2014). “Panduan Pelaksanaan Pelayanan Kedokteran Gigi dalam Sistem Jaminan Kesehatan Nasional” (Guideline on Dental care in the National Healthcare System). 1 Ed. Jakarta, Board of Indonesian Dentist Association.Google Scholar
  16. Dodes, J. (2001). The amalgam controversy. Journal of the American Dental Association, 132, 348–356.CrossRefGoogle Scholar
  17. Donly, K. (2002). Sealants: Where we have been; where we are going. General Dentistry, 50, 438–440.Google Scholar
  18. Donovan, T., & Heymann, H. O. (2010). Enduring amalgam: No requiem needed. Journal of Esthetic and Restorative Dentistry, 22, 277–279.CrossRefGoogle Scholar
  19. Eckerman, M., Suuronen, K., Jolanki, R., & Alanko, K. (2004). Methacrylates in dental restorative materials. Contact Dermatitis, 50, 233–237.CrossRefGoogle Scholar
  20. Eliades, G., Kakaboura, A., & Palaghias, G. (1998). Acid-base reaction and fluoride release profiles in visible light-cured polyacid-modified composite restoratives (compomers). Dental Materials, 14, 57–63.CrossRefGoogle Scholar
  21. Erdemir, U., Sancakli, H. S., Yaman, B. C., Ozel, S., Yucel, T., & Yildiz, E. (2014). Clinical comparison of a flowable composite and fissure sealant: A 24-month split-mouth, randomized, and controlled study. Journal of Dentistry, 42, 149–157.CrossRefGoogle Scholar
  22. Farooq, I., Moheet, I. A., Imran, Z., & Farooq, U. (2013). A review of novel dental caries preventive material: Casein phosphopeptide—amorphous calcium phosphate (CPP-ACP) complex. King Saud University Journal of Dental Sciences, 4, 47–51.CrossRefGoogle Scholar
  23. Featherstone, J. (2000). The science and practice of caries prevention. Journal of the American Dental Association, 131, 887–899.CrossRefGoogle Scholar
  24. Ferracane, J. L. (1994). Elution of leachable components from composite. Journal of Oral Rehabilitation, 21, 441–452.CrossRefGoogle Scholar
  25. Ferracane, J. L. (1995). Current trends in dental composites. Critical Reviews in Oral Biology and Medicine, 6, 302–318.CrossRefGoogle Scholar
  26. Ferracane, J. L. (2011). Resin composite: State of the art. Dental Materials, 27, 29–38.CrossRefGoogle Scholar
  27. Francisconi, L., Scaffa, P., Barros, V., Coutinho, M., & Francisconi, P. (2009). Glass ionomer cements and their role in the restoration of non-carious cervical lesions. Journal of Applied Oral Science, 17, 364–369.Google Scholar
  28. Gonzalez-Cabezas, C. (2010). The chemistry of caries: Remineralization and demineralization events with direct clinical relevance. Dental Clinics of North America, 54, 469–478.CrossRefGoogle Scholar
  29. Gordan, V., Mjør, I., Blum, I., & Wilson, N. (2003). Teaching students the repair of resin-based composite restorations: A survey of North American dental schools. Journal of the American Dental Association, 134, 317–323.CrossRefGoogle Scholar
  30. Haffajee, A. D., Yaskell, T., & Socransky, S. S. (2008). Antimicrobial effectiveness of an herbal mouthrinse compared with an essential oil and a chlorhexidine mouthrinse. Journal of the American Dental Association, 139, 606–611.CrossRefGoogle Scholar
  31. Handajani, J. (2006). “Kadar sIgA saliva penderita gingivitis setelah berkumur epogallocathechin gallate ekstrak the Camellia sinensis” (The sIgA saliva content of gingivitis patients after gargling with extract of eopgallocathechin galate). Jurnal Kedokteran Yarsi, 14, 106–110.Google Scholar
  32. Handajani, J. (2009). “Efek pasta gigi ekstrak etanolik teh segar 2 % dan epigallocathechin gallate ekstrak teh 0.1 % terhadap indeks plak gigi” (Effect of toothpast containing ethanolic extract of 2 % fresh tea and 0.1 % of epigallocathechin gallate toward tooth plaque index). Dentika Dental Journal, 14, 25–40.Google Scholar
  33. Handajani, J. (2012). “Efek antimikroba pasta gigi kandungan ekstrak daun teh 2 % (Camelia sinensis) terhadap A. Actinomycetemcomitants” (Effect of antimicrobial toothpaste containing 2 % extract of tea leave Camelia sinensis toward A. Actinomycetemcomitants). Majalah Kedokteran Gigi, 19, 9–12.Google Scholar
  34. He, L. H., & Swain, M. (2011). A novel polymer infiltrated ceramic dental material. Dental Materials, 27, 527–534.CrossRefGoogle Scholar
  35. He, L. H., Purton, D., & Swain, M. (2011). A novel polymer infiltrated ceramic for dental simulation. Journal of Materials Science. Materials in Medicine, 22, 1639–1643.CrossRefGoogle Scholar
  36. Herliansyah, M. K., Rinastiti, M., & Hilmi, I. (2013). “Pengembangan material pasak endodontik Ti/40HA dengan menggunakan konsep Functionally Gradient Material” (Development of endodonthic abutment material Ti/40HA using a functionally gradient material concept). Teknosains, 2, 115–120.Google Scholar
  37. Heymann, H., Swift, E., Williams, D. M., & Ritter, A. (2012). Sturdevant’s art and science of operative dentistry (6th ed.). Toronto: McGraw-Hill.Google Scholar
  38. Hobdell, M., Petersen, P. E., Clarkson, J., & Johnson, N. (2003). Global goals for oral health 2020. International Dental Journal, 53, 285–288.CrossRefGoogle Scholar
  39. Hosoda, H., Yamada, T., & Inokoshi, S. (1990). SEM and elemental analysis of composite resins. Journal of Prosthetic Dentistry, 64, 669–676.CrossRefGoogle Scholar
  40. Ilie, N., & Durner, J. (2013). Polymerisation kinetics in bulk-fill resin-based composites. Dental Materials, 29(S1), e43.CrossRefGoogle Scholar
  41. Ilie, N., Bucuta, S., & Dreaenert, M. (2013). Bulk-fill resin-based composites: An in vitro assessment of their mechanical performance. Operative Dentistry, 38, 618–625.CrossRefGoogle Scholar
  42. Irnawati, D., Agustiono, P., & Wardhani, E. (2010). The effect of CU concentration in the Cu-natural zeolite on its antifungal activity towards Candida albicans. FKG UGM. Research Report, Yogyakarta.Google Scholar
  43. Irnawati, D., Widjijono, W. K., & Asmara, W. (2013). Effect of Copper (III) Chloride concentration owards copper ions sorption on natural zeolite from Wonosari. The Indonesian Journal of Dental Research Proceeding of The International Symposium on Oral and Dental Sciences, 39–43.Google Scholar
  44. Jackson, R. (2011). Placing posterior composites: Increasing efficiency. Dentistry Today, 30, 130–131.Google Scholar
  45. Kantovitz, K. R., Pascon, F. M., Correr, G. M., Alonso, R. C. B., Rodrigues, L. K. A., Alves, M. C., & Puppin-Rontani, R. M. (2009). Influence of environmental conditions on properties of ionomeric and resin sealant materials. Journal of Applied Oral Science, 17, 294–300.CrossRefGoogle Scholar
  46. Kelly, J. R. (2004). Dental ceramics: Current thinking and trends. Dental Clinics of North America, 48, 513–530.CrossRefGoogle Scholar
  47. Kelly, J. R. (2008). Dental Ceramics. Journal of the American Dental Association, 139, S4–S7.CrossRefGoogle Scholar
  48. Kidd, E., Smith, B., Watson, T., & Pickard, H. (2003). Pickard’s manual of operative dentistry (8th ed.). New York: Oxford University Press.Google Scholar
  49. Kilpatrick, N. (1996). Glass ionomer cements: Their application in children. Part 1. Dentistry Update, 23, 236–238.Google Scholar
  50. Klapdohr, S., & Mozner, N. (2005). New inorganic components for dental filling composites. Monatshefte fuer Chemie, 136, 21–45.CrossRefGoogle Scholar
  51. Komatsu, H., Shimokobe, H., Kawakami, S., & Yoshimura, M. (1994). Caries-preventive effect of glass ionomer sealant reapplication: Study presents three-year results. Journal of the American Dental Association, 125, 543–549.CrossRefGoogle Scholar
  52. Labella, R., Lambrechts, P., van Meerbeek, B., & Vanherle, G. (1999). Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dental Materials, 15, 128–137.CrossRefGoogle Scholar
  53. Leinfelder, K. (2000). Porcelain esthetics for the 21st century. Journal of the American Dental Association, 131, 47S–51S.CrossRefGoogle Scholar
  54. Lin, C., Lee, S., Keh, E., Dong, D., Huang, H., & Shih, Y. (2000). Influence of silanization and filler fraction on aged dental composites. Journal of Oral Rehabilitation, 27, 919–926.CrossRefGoogle Scholar
  55. Lowe, E. (2012). Chapter 19—Single-Tooth All-Ceramic Restorations. In G. Freedman (Ed.), Contemporary Esthetic Dentistry. Saint Louis: Mosby.Google Scholar
  56. Mäkinen, K. K., Järvinen, K. L., Anttila, C. H., Luntamo, L. M., & Vahlberg, T. (2013). Topical xylitol administration by parents for the promotion of oral health in infants: A caries prevention experiment at a Finnish Public Health Centre. International Dental Journal, 63, 210–224.CrossRefGoogle Scholar
  57. Marinho, V., Higgins, J., Sheiham, A., & Logan, S. (2009). One topical fluoride (toothpastes, or mouthrinses, or gels, or varnishes) versus another for preventing dental caries in children and adolescents (Review). Cochrane Database Systematic Review, 1, 1–15.Google Scholar
  58. Marquis, R. E. (1995). Antimicrobial actions of fluoride for oral bacteria. Canadian Journal of Microbiology, 41, 955–964.CrossRefGoogle Scholar
  59. Meyer, J., Cattani-Lorente, M., & Dupuis, V. (1998). Compomers: Between glass-ionomer and composites. Biomaterials, 19, 529–539.Google Scholar
  60. Moorthy, A., Hogg, C. H., Dowling, A. H., Grufferty, B. F., Benetti, A. R., & Fleming, G. J. P. (2012). Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. Journal of Dentistry, 40, 500–505.CrossRefGoogle Scholar
  61. Morris, H. F., Manz, M., Stoffer, W., & Weir, D. (1992). Casting alloys: The materials and “the clinical effects”. Advances in Dental Research, 6, 28–31.Google Scholar
  62. Mulyawati, E., Marsetyawan. H. N. E. S., Sunarintyas, S., & Handajani, J. (2015). Physical properties of calcite synthesized hydroxyapatite as the filler of epoxy-resin-based root canal sealer. Dental Journal, 46, 209–214.Google Scholar
  63. Nicholson, J. W., & Alsarheed, M. (1998). Changes on storage of polyacid-modified composite resins. Journal of Oral Rehabilitation, 25, 616–620.CrossRefGoogle Scholar
  64. Nirmaladewi, A., Handajani, J., & Tandelilin, R. (2007). Saliva and gingivitis status on gingivitis patients after gargking Epigalacatechin gallate (EGCG) obtained from green tea (Camelia sinensis) extract. Majalah Obat Tradisional, 12, 31–35.Google Scholar
  65. Nör, J. E. (2006). Buonocore memorial lecture. Operative Dentistry, 31, 633–642.CrossRefGoogle Scholar
  66. Oong, E. M., Griffin, S. O., Kohn, W. G., Gooch, B. F., & Caufield, P. W. (2008). The effect of dental sealants on bacteria levels in caries lesions: A review of the evidence. Journal of the American Dental Association, 139, 271–278.CrossRefGoogle Scholar
  67. Petersen, P., Baez, R., Kwan, S., & Ogawa, H. (2009). Future Use of Materials for Dental Restorations: Report of The Meeting Convened at WHO HQ, Geneva, Switzerland.Google Scholar
  68. Peutzfeldt, A. (1997). Resin composites in dentistry: The monomer systems. European Journal of Oral Sciences, 105, 97–116.CrossRefGoogle Scholar
  69. Pitts, N. B. (2004). Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Research, 38, 294–304.CrossRefGoogle Scholar
  70. Pujiyanto, E. E., Tontowi, A. E., Wildan, M. W., & Siswomihardjo, W. (2006). “Sintesis hidroksiapatit dari gipsum Tasikmalaya sebagai bahan baku produk tulang buatan” (Synthesis of hydroxyapatite from Tasikmalaya gypsum for artificial bone material). In Seminar on Aplication and Research in Industrial Technology. Yogyakarta, Jurusan Teknik Mesin dan Industri UGM, pp. 119–126.Google Scholar
  71. Randall, R., & Wilson, N. (1999). Glass-ionomer restoratives: A systematic review of a secondary caries treatment effect. Journal of Dental Research, 78, 628–637.CrossRefGoogle Scholar
  72. Reich, E., Petersson, L. G., Netuschil, L., & Brecx, M. (2002). Mouthrinses and dental caries. International Dental Journal, 52, 337–345.CrossRefGoogle Scholar
  73. Reynolds, E. C., Cai, F., Cochrane, N. J., Shen, P., Walker, G. D., Morgan, M. V., & Reynolds, C. (2008). Fluoride and casein phosphopeptide-amorphous calcium phosphate. Journal of Dental Research, 87, 344–348.CrossRefGoogle Scholar
  74. Ricketts, D., & Bartlett, D. (2011). Advanced operative dentistry: A practical approach. Toronto: Elsevier.Google Scholar
  75. Rothwell, M., Anstice, H. M., & Pearson, G. J. (1998). The uptake and release of fluoride by ion-leaching cements after exposure to toothpaste. Journal of Dentistry, 26, 591–597.CrossRefGoogle Scholar
  76. Ruyter, I. E. (1988). Composites—characterization of composite filling materials: Reactor response. Advances in Dental Research, 2, 122–133.Google Scholar
  77. Sakaguchi, R., & Powers, J. (2012). Craig’s restorative dental materials (13th ed.). Philadelphia: Elsevier.Google Scholar
  78. Shantiningsih, R. R., Suwaldi & Mudjosemedi, M. (2015). “Formulasi sediaan patch gingiva mukoadesif betacaroten untuk radioprotektor radiografi panoramic” (Formulation of gingiva mucoadhesive patch for panoramic radiographic radioprotector). Proceeding Book GAMA Dentistry Scientific Conference, Yogyakarta, 26–28 February.Google Scholar
  79. Shenoy, A., & Shenoy, N. (2010). Dental ceramics: An update. Journal of Conservative Dentistry, 13, 195–203.CrossRefGoogle Scholar
  80. Silverman Jr., S., & Wilder, R. (2006). Antimicrobial mouthrinse as part of a comprehensive oral care regimen. The Journal of the American Dental Association, 137, S22–S26.Google Scholar
  81. Simonsen, R. J., & Neal, R. C. (2011). A review of the clinical application and performance of pit and fissure sealants. Australian Dental Journal, 56, 45–58.CrossRefGoogle Scholar
  82. Simonsen, R. J. (1991). Retention and effectiveness of dental sealant after 15 years. Journal of the American Dental Association, 122, 34–42.CrossRefGoogle Scholar
  83. Smales, R., & Wong, K. (1999). 2-year clinical performance of a resin-modified glass ionomer sealant. American Journal of Dentistry, 12, 59–61.Google Scholar
  84. Tesk, J. A., Antonucci, J. M., Carey, C. M., Eichmiller, F. C., Kelly, J. R., Rupp, N. W., et al. (2000). Dental Materials. Kirk-Othmer Encyclopedia of Chemical Technology. New York: Wiley.Google Scholar
  85. Todd, J., & Wanner, M. (2014). Scientific documentation Tetric Evo Ceram Bulk Fill. Liechenstein: Ivoclar Vivadent.Google Scholar
  86. Twetman, S., Axelsson, S., Dahlgren, H., Holm, A. K., Källestål, C., Lagerlöf, F., et al. (2003). Cariespreventive effect of fluoride toothpaste: A systematic review. Acta Odontologica Scandinavica, 61, 347–355.CrossRefGoogle Scholar
  87. Tyas, M., Anusavice, K., & Frencken, J. (2000). Minimal intervention Dentistry-A Review. FDI Commission Project. International Dental Journal, 50, 1–12.CrossRefGoogle Scholar
  88. Uno, S., Finger, W. J., & Fritz, U. (1996). Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dental Materials, 12, 64–69.CrossRefGoogle Scholar
  89. Upadhyay, D., Panchal, M. A., Dubey, R. S., & Srivastava, V. K. (2006). Corrosion of alloys used in dentistry: A review. Materials Science and Engineering A, 432, 1–11.CrossRefGoogle Scholar
  90. Van Rijkom, H. M., Truin, G. J., & Van’t Hof, M. A. (1996). A Meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment. Journal of Dental Research, 75, 790–795.Google Scholar
  91. Walker, C. B. (1988). Microbiological effects of mouthrinses containing antimicrobials. Journal of Clinical Periodontology, 15, 499–505.CrossRefGoogle Scholar
  92. Wang, Z., Sa, Y., Sauro, S., Chen, H., Xing, W., Ma, X., et al. (2010). Effect of desensitising toothpastes on dentinal tubule occlusion: A dentine permeability measurement and SEM in vitro study. Journal of Dentistry, 38, 400–410.CrossRefGoogle Scholar
  93. Watson, T. F., Atmeh, R. A., Sajini, S., Cook, R. J., & Festy, F. (2014). Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease. Dental Materials, 30, 50–61.CrossRefGoogle Scholar
  94. Weyant, R. J., Tracy, S. L., Anselmo, T., Beltrín-Aguilar, E. D., Donly, K. J., Frese, W. A., et al. (2013). Topical fluoride for caries prevention. Journal of the American Dental Association, 144, 1279–1291.CrossRefGoogle Scholar
  95. Wilder, J., Swift, J., May, J., Thompson, J. Y., & McDougal, R. A. (2000). Effect of finishing technique on the microleakage and surface texture of resin-modified glass ionomer restorative materials. Journal of Dentistry, 28, 367–373.CrossRefGoogle Scholar
  96. Wilson, A. (1989). Development in glass-ionomer cements. The International Journal of Prosthodontics, 2, 438–446.Google Scholar
  97. Winkler, M. M., Deschepper, E., Dean, J., Moore, B., Cochran, M., & Ewoldsen, N. (1996). Using a resin-modified glass ionomers as an occlusal sealant: A one year clinical study. Journal of the American Dental Association, 127, 1508–1514.CrossRefGoogle Scholar
  98. Xu, H. (1999). Dental composite resins containing silica-fused ceramic single crystalline whiskers with various filler levels. Journal of Dental Research, 78, 1304–1311.CrossRefGoogle Scholar
  99. Yang, L., Wang, J., Hong, J., Santerre, J. P., & Pilliar, R. M. (2003). Synthesis and characterization of a novel polymer-ceramic system for biodegradable composite applications. Journal of Biomedical Materials Research, 66A, 622–632.CrossRefGoogle Scholar
  100. Yengopal, V., & Mickenautsch, S. (2009). Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): A meta-analysis. Acta Odontologica Scandinavica, 67, 321–332.CrossRefGoogle Scholar
  101. Yip, K., & Smales, R. (2013). Oral diagnosis and treatment planning: Part 2. Dental caries and assessment of risk. British Dental Journal, 213, 59–66.CrossRefGoogle Scholar
  102. Zero, D. T., Zhang, J. Z., Harper, D., Wu, M., Kelly, S., Waskow, J., & Hoffman, M. (2004). The remineralizing effect of an essential oil fluoride mouthrinse in an intraoral caries test. Journal of the American Dental Association, 135, 231–237.CrossRefGoogle Scholar
  103. Zhang, Q., Van Palenstein Helderman, W. H., Van’t Hof, M. A., & Truin, G. J. (2006). Chlorhexidine varnish for preventing dental caries in children, adolescents and young adults: A systematic review. European Journal of Oral Sciences, 114, 449–455.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Conservative Dentistry, Faculty of DentistryGadjah Mada UniversityYogyakartaIndonesia

Personalised recommendations