Skip to main content

Degradable Biomaterials for Temporary Medical Implants

  • Chapter
  • First Online:
Book cover Biomaterials and Medical Devices

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 58))

Abstract

Degradable biomaterials bring possibilities to fabricate medical implants that function for a determined period related to clinical events such as healing. They can be made on the basis of polymers, ceramics and metals. These metals, which are expected to corrode gradually in vivo with an appropriate host response and then dissolve completely upon fulfilling the mission to assist with tissue healing, are known as biodegradable metals. They constitute a novel class of bioactive biomaterials which supports the healing process of temporary clinical problems. Three classes of metals have been explored: magnesium-, zinc- and iron-based alloys. Three targeted applications are envisaged: orthopaedic, cardiovascular and pediatric implants. Three levels of investigations have been conducted: in vitro, in vivo and clinical trials. Discussion on standardization has been initiated since 2013 with representatives from ISO, DIN and ASTM and drafts of comprehensive standards are now under preparation. The field of biodegradable metals is exciting and witnessing more development in the future including new advanced alloys and new real breakthrough that leads to its clinical translation. This chapter starts with a discussion on biodegradable polymers to gain important lessons learned for advancing the research in biodegradable metals, the new emerging research interest in the forefront of biomaterials loaded with full of great expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, S. B., Shamji, M. F., Nettles, D. L., Hwang, P., & Setton, L. A. (2009). Sustained release of antibiotics from injectable and thermally responsive polypeptide depots. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 90B, 67–74.

    Article  Google Scholar 

  • Aghion, E., Levy, G., & Ovadia, S. (2012). In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy. Journal of Materials Science Materials in Medicine, 23, 805–812.

    Article  Google Scholar 

  • Akbari, H., D’Emanuele, A., & Attwood, D. (1998). Effect of geometry on the erosion characteristics of polyanhydride matrices. International Journal of Pharmaceutics, 160, 83–89.

    Article  Google Scholar 

  • Al-Assaf, S., Navaratnam, S., Parsons, B. J., & Phillips, G. O. (2003). Chain scission of hyaluronan by peroxynitrite. Archives of Biochemistry and Biophysics, 411, 73–82.

    Article  Google Scholar 

  • Ambrosio, L. (2009). Biomedical composites. Cambridge: Woodhead Publishing.

    Google Scholar 

  • Andriano, K. P., Tabata, Y., Ikada, Y., & Heller, J. (1999). In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. Journal of Biomedical Materials Research, 48, 602–612.

    Article  Google Scholar 

  • Bach, F. W., Schaper, M., & Jaschik, C. (2003). Influence of lithium on HCP magnesium alloys. Materials Science Forum, 419–422, 1037.

    Article  Google Scholar 

  • Barrows, T. (1986). Degradable implant materials: A review of synthetic absorbable polymers and their applications. Clinical Materials, 1, 233–257.

    Article  Google Scholar 

  • Bergsma, J. E., de Bruijn, W. C., Rozema, F. R., Bos, R. R. M., & Boering, G. (1995). Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials, 16, 25–31.

    Article  Google Scholar 

  • Bessa, P. C., Machado, R., Nürnberger, S., Dopler, D., Banerjee, A., Cunha, A. M., et al. (2010). Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. Journal of Controlled Release, 142, 312–318.

    Article  Google Scholar 

  • Bidwell III, G. L., Fokt, I., Priebe, W., & Raucher, D. (2007). Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochemical Pharmacology, 73, 620–631.

    Google Scholar 

  • Black, J. T., & Kohser, R. A. (2008). DeGarmo’s Materials and Processes in Manufacturing. New York: Wiley.

    Google Scholar 

  • Bostman (1991). Current concepts review: Absorbable implants for fixation of fractures. Journal of Bone Joint Surgery, 73-A, 148–153.

    Google Scholar 

  • Bowen, P. K., Drelich, J., & Goldman, J. (2013). Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials, 25, 2577–2582.

    Article  Google Scholar 

  • Bushnell, B. D., McWilliams, A. D., Whitener, G. B., & Messer, T. M. (2008). Early clinical experience with collagen nerve tubes in digital nerve repair. The Journal of Hand Surgery, 33, 1081–1087.

    Article  Google Scholar 

  • Chan, P. S., Caron, J. P., Rosa, G. J. M., & Orth, M. W. (2005). Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthritis and Cartilage, 13, 387–394.

    Google Scholar 

  • Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23, 1273–1335.

    Article  Google Scholar 

  • Chen, H., Zhang, E., & Yang, K. (2014). Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application. Materials Science and Engineering C: Materials for Biological Applications, 34, 201–206.

    Article  Google Scholar 

  • Cheng, J., Huang, T., & Zheng, Y. F. (2014). Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. Journal of Biomedical Materials Research, Part A, 102, 2277–2287.

    Article  Google Scholar 

  • Cheng, J., Huang, T., & Zheng, Y. F. (2015). Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Materials Science and Engineering C: Materials for Biological Applications, 48, 679–687.

    Article  Google Scholar 

  • Cheung, H.-Y., Lau, K.-T., Lu, T.-P., & Hui, D. (2007). A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B Engineering, 38, 291–300.

    Article  Google Scholar 

  • Choi, J. S., Yang, H.-J., Kim, B. S., Kim, J. D., Kim, J. Y., Yoo, B., et al. (2009). Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. Journal of Controlled Release, 139, 2–7.

    Article  Google Scholar 

  • Chuang, V. G. T., Kragh-Hansen, U., & Otagiri, M. (2002). Pharmaceutical strategies utilizing recombinant human serum albumin. Pharmaceutical Research, 19, 569–577.

    Article  Google Scholar 

  • Conley Wake, M., Gerecht, P. D., Lu, L., & Mikos, A. G. (1998). Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro. Biomaterials, 19, 1255–1268.

    Google Scholar 

  • Dambatta, M. S., Izman, S., Hermawan, H., & Kurniawan, D. (2013). Influence of heat treatment cooling mediums on the degradation property of biodegradable Zn-3Mg alloy. Advanced Materials Research, 845, 7–11.

    Article  Google Scholar 

  • Drynda, A., Hassel, T., Bach, F. W., & Peuster, M. (2014). In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 00, 000–000.

    Google Scholar 

  • Dziuba, D., Meyer-Lindenberg, A., Seitz, J. M., Waizy, H., Angrisani, N., & Reifenrath, J. (2013). Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomaterialia, 9, 8548–8560.

    Article  Google Scholar 

  • El-Omar, M. M., Dangas, G., Iakovou, I., & Mehran, R. (2001). Update on in-stent restenosis. Current Interventional Cardiology Reports, 3, 296–305.

    Google Scholar 

  • Erin, G., & Robert, T. T. (2005). Fibrillar Fibrin Gels. Scaffolding in Tissue Engineering. London: CRC Press.

    Google Scholar 

  • Fontcave, M., & Pierre, J. L. (1993). Iron: Metabolism, toxicity and therapy. Biochimie, 73, 767–773.

    Article  Google Scholar 

  • Fosmire, G. J. (1990). Zinc toxicity. American Journal of Clinical Nutrition, 51, 225–227.

    Google Scholar 

  • Gao, J., Qiao, L., Wang, Y., & Xin, R. (2010). Research on bone inducement of magnesium in vivo. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 39, 296–299.

    Google Scholar 

  • Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Progress in Materials Science, 54, 397–425.

    Article  Google Scholar 

  • Gong, H., Wang, K., Strich, R., & Zhou, J. G. (2015). In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103B, 1632–1640.

    Google Scholar 

  • Gray, J. E., & Luan, B. (2002). Protective coatings on magnesium and its alloys: A critical review. Journal of Alloys and Compounds, 336, 88–113.

    Article  Google Scholar 

  • Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J., & Lee, R. C. (1988). Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. Journal of Orthopaedic Research, 6, 777–792.

    Article  Google Scholar 

  • Griffith, L. G. (2000). Polymeric biomaterials. Acta Materialia, 48, 263–277.

    Article  Google Scholar 

  • Gu, X., Zheng, Y., Cheng, Y., Zhong, S., & Xi, T. (2009). In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 30, 484–498.

    Article  Google Scholar 

  • Gunatillake, P. A., & Adhikari, R. (2003). Biodegradable synthetic polymers for tissue engineering. European Cells and Materials, 5, 1–16.

    Google Scholar 

  • Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12, 301–347.

    Google Scholar 

  • Habibovic, P., Barrère, F., Blitterswijk, C. A. V., Groot, K. D., & Layrolle, P. (2002). Biomimetic hydroxyapatite coating on metal implants. Journal of American Ceramics Society, 83, 517–522.

    Google Scholar 

  • Hacker, M. C., & Mikos, A. G. (2011). Chapter 33: Synthetic Polymers. In A. A. L. A. T. Nerem (Ed.), Principles of Regenerative Medicine (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Hallab, N., Merritt, K., & Jacobs, J. J. (2001). Metal sensitivity in patients with orthopaedic implants. Journal of Bone and Joint Surgery American Volume, 83-A, 428–436.

    Google Scholar 

  • Hänzi, A. C., Gerber, I., Schinhammer, M., Löffler, J. F., & Uggowitzer, P. J. (2010). On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomaterialia, 6, 1824–1833.

    Article  Google Scholar 

  • Hartwig, A. (2001). Role of magnesium in genomic stability. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis, 475, 113–121.

    Article  Google Scholar 

  • Henderson, S. E., Verdelis, K., Maiti, S., Pal, S., Chung, W. L., Chou, D.-T., et al. (2014). Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomaterialia, 10, 2323–2332.

    Article  Google Scholar 

  • Hermawan, H. (2012). Biodegradable Metals: From Concept to Applications. Heidelberg: Springer.

    Book  Google Scholar 

  • Hermawan, H., & Mantovani, D. (2009). Degradable metallic biomaterials: The concept, current developments and future directions. Minerva Biotecnologica, 21, 207–216.

    Google Scholar 

  • Hermawan, H., Alamdari, H., Mantovani, D., & Dubé, D. (2008). Iron-manganese: New class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy, 51, 38–45.

    Article  Google Scholar 

  • Hermawan, H., Dubé, D., & Mantovani, D. (2010a). Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents. Journal of Biomedical Materials Research, Part A, 93A, 1–11.

    Google Scholar 

  • Hermawan, H., Purnama, A., Dube, D., Couet, J., & Mantovani, D. (2010b). Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomaterialia, 6, 1852–1860.

    Article  Google Scholar 

  • Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W., & Haverich, A. (2003). Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart, 89, 651–656.

    Article  Google Scholar 

  • Hoffman, A. S. (1996). Classes of Materials Used in Medicine. In B. D. Ratner, A. S. Hoffman, F. J. Schoen & J. E. Lemons (Eds.), Biomaterials Science: An Introduction to Materials in Medicine. San Diego: Academic Press.

    Google Scholar 

  • Hofstetter, J., Martinelli, E., Weinberg, A. M., Becker, M., Mingler, B., Uggowitzer, P. J., & Löffler, J. F. (2015). Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corrosion Science, 91, 29–36.

    Article  Google Scholar 

  • Hoog, C. O., Birbilis, N., Zhang, M. X., & Estrin, Y. (2008). Surface grain size effects on the corrosion of magnesium. Key Engineering Materials, 384, 229–240.

    Article  Google Scholar 

  • Hornberger, H., Virtanen, S., & Boccaccini, A. R. (2012). Biomedical coatings on magnesium alloys: A review. Acta Biomaterialia, 8, 2442–2455.

    Article  Google Scholar 

  • Hort, N., Huang, Y., Fechner, D., Störmer, M., Blawert, C., Witte, F., et al. (2010). Magnesium alloys as implant materials-Principles of property design for Mg-RE alloys. Acta Biomaterialia, 6, 1714–1725.

    Article  Google Scholar 

  • Housh, S., & Mikucki, B. (1990). Selection and Application of Magnesium and Magnesium Alloys. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International.

    Google Scholar 

  • Huang, J., Ren, Y., Zhang, B., & Yang, K. (2007). Study on biocompatibility of magnesium and its alloys. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 36, 1102–1105.

    Google Scholar 

  • Ilich, J. Z., & Kerstetter, J. E. (2000). Nutrition in bone health revisited: A story beyond calcium. Journal of the American College of Nutrition, 19, 715–737.

    Article  Google Scholar 

  • James, K., & Kohn, J. (1996). New Biomaterials for tissue engineering. MRS Bull. November, 22.

    Google Scholar 

  • Jenkins, M. (2007). Biomedical polymers. Cambridge: Woodhead Publishing.

    Book  Google Scholar 

  • Kaesel, V., Tai, P. T., Bach, F. W., Haferkamp, H., Witte, F., & Windhagen, H. (2005). Approach to control the corrosion of magnesium by alloying. Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications. Wiley-VCH.

    Google Scholar 

  • Kanerva, L., & Förström, L. (2001). Allergic nickel and chromate hand dermatitis induced by orthopaedic metal implant. Contact Dermatitis, 44, 103–104.

    Article  Google Scholar 

  • Kannan, M. B., & Raman, R. K. S. (2008). In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 29, 2306–2314.

    Article  Google Scholar 

  • Kim, W. C., Kim, J. G., Lee, J. Y., & Seok, H. K. (2008). Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, 62, 4146–4148.

    Article  Google Scholar 

  • Kirkland, N. T., Birbilis, N., & Staiger, M. P. (2012). Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomaterialia, 8, 925–936.

    Article  Google Scholar 

  • Kishida, A., Murakami, K., Goto, H., Akashi, M., Kubota, H., & Endo, T. (1998). Polymer drugs and polymeric drugs X: Slow release of B-fluorouracil from biodegradable poly(γ-glutamic acid) and its benzyl ester matrices. Journal of Bioactive and Compatible Polymers, 13, 270–278.

    Google Scholar 

  • Kokubo, T. (2008). Bioceramics and their clinical applications. Cambridge: Woodhead Publishing.

    Book  Google Scholar 

  • Kosir, M. A., Quinn, C. C. V., Wang, W., & Tromp, G. (2000). Matrix glycosaminoglycans in the growth phase of fibroblasts: More of the story in wound healing. Journal of Surgical Research, 92, 45–52.

    Article  Google Scholar 

  • Krane, S. (2008). The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids, 35, 703–710.

    Article  Google Scholar 

  • Kraus, T., Fischerauer, S. F., Hänzi, A. C., Uggowitzer, P. J., Löffler, J. F., & Weinberg, A. M. (2012). Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomaterialia, 8, 1230–1238.

    Article  Google Scholar 

  • Kraus, T., Moszner, F., Fischerauer, S., Fiedler, M., Martinelli, E., Eichler, J., et al. (2014). Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta Biomaterialia, 10, 3346–3353.

    Article  Google Scholar 

  • Kubásek, J., Vojtěch, D., Jablonská, E., Pospíšilová, I., Lipov, J., & Ruml, T. (2016). Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Materials Science and Engineering C: Materials for Biological Applications, 58, 24–35.

    Google Scholar 

  • Kulkarni, R. K., Moore, E. G., Hegyeli, A. F., & Leonard, F. (1971). Biodegradable poly(lactic acid) polymers. Journal of Biomedical Materials Research, 5, 169–181.

    Article  Google Scholar 

  • Lahann, J., Klee, D., Thelen, H., Bienert, H., Vorwerk, D., & Hocker, H. (1999). Improvement of haemocompatibility of metallic stents by polymer coating. Journal of Materials Science Materials in Medicine, 10, 443–448.

    Article  Google Scholar 

  • Lakshmi, S., Katti, D. S., & Laurencin, C. T. (2003). Biodegradable polyphosphazenes for drug delivery applications. Advanced Drug Delivery Reviews, 55, 467–482.

    Article  Google Scholar 

  • Lee, J.-Y., Han, G., Kim, Y.-C., Byun, J.-Y., Jang, J.-I., Seok, H.-K., & Yang, S.-J. (2009). Effects of impurities on the biodegradation behavior of pure magnesium. Metals and Materials International, 15, 955–961.

    Article  Google Scholar 

  • Li, C. (2002). Poly(L-glutamic acid)-anticancer drug conjugates. Advanced Drug Delivery Reviews, 54, 695–713.

    Article  Google Scholar 

  • Li, L., Gao, J., & Wang, Y. (2004). Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coating Technology, 185, 92–98.

    Article  Google Scholar 

  • Li, Z., Gu, X., Lou, S., & Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as biodegradable materials within bones. Biomaterials, 29, 1329–1344.

    Article  Google Scholar 

  • Li, H., Zheng, Y., & Qin, L. (2014). Progress of biodegradable metals. Progress in Natural Science: Materials International, 24, 414–422.

    Article  Google Scholar 

  • Liu, B., & Zheng, Y. F. (2011a). Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 7, 1407–1420.

    Article  Google Scholar 

  • Liu, B., & Zheng, Y. F. (2011b). Effects of alloying elements (Mn Co, Al, W, Sn, B, C and A. W. 2002. Interfacial bioengineering to enhance surface biocompatibility. Medical Device Technology, 13, 18–21.

    Google Scholar 

  • Liu, X., Wang, X.-M., Chen, Z., Cui, F.-Z., Liu, H.-Y., Mao, K., & Wang, Y. (2010). Injectable bone cement based on mineralized collagen. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 94B, 72–79.

    Google Scholar 

  • Liu, B., Zheng, Y. F., & Ruan, L. (2011). In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, 65, 540–543.

    Article  Google Scholar 

  • Li, N., & Zheng, Y. (2013). Novel magnesium alloys developed for biomedical application: A review. Journal of Materials Science and Technology, 29, 489–502.

    Google Scholar 

  • Lloyd, A. W. (2002). Interfacial bioengineering to enhance surface biocompatibility. Medical Device Technology, 13, 18–21.

    Google Scholar 

  • Makar, G. L., & Kruger, J. (1993). Corrosion of magnesium. International Materials Reviews, 38, 138–153.

    Article  Google Scholar 

  • Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., et al. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of the Royal Society, Interface, 4, 999–1030.

    Article  Google Scholar 

  • Matsuno, T., Nakamura, T., Kuremoto, K.-I., Notazawa, S., Nakahara, T., Hashimoto, Y., et al. (2006). Development of β-tricalcium phosphate/collagen sponge composite for bone regeneration. Dental Materials Journal, 25, 138–144.

    Article  Google Scholar 

  • Maurus, P. B., & Kaeding, C. C. (2004). Bioabsorbable implant material review. Operative Techniques in Sports Medicine, 12, 158–160.

    Article  Google Scholar 

  • McCall, K. A., Huang, C.-C., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of Nutrition, 130, 1437S–1446S.

    Google Scholar 

  • Meslemani, D., & Kellman, R. M. (2012). Recent advances in fixation of the craniomaxillofacial skeleton. Current Opinion in Otolaryngology and Head and Neck Surgery, 20, 304–309.

    Article  Google Scholar 

  • Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.

    Article  Google Scholar 

  • Mithieux, S. M., Rasko, J. E. J., & Weiss, A. S. (2004). Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials, 25, 4921–4927.

    Article  Google Scholar 

  • Mohd Daud, N., Sing, N. B., Yusop, A. H., Abdul Majid, F. A., & Hermawan, H. (2014). Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds. Journal of Orthopaedic Translation, 2, 177–184.

    Google Scholar 

  • Moravej, M., Prima, F., Fiset, M., & Mantovani, D. (2010a). Electroformed iron as new biomaterial for degradable stents: Development process and structure–properties relationship. Acta Biomaterialia, 6, 1726–1735.

    Article  Google Scholar 

  • Moravej, M., Purnama, A., Fiset, M., Couet, J., & Mantovani, D. (2010b). Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta Biomaterialia, 6, 1843–1851.

    Article  Google Scholar 

  • Moravej, M., Amira, S., Prima, F., Rahem, A., Fiset, M., & Mantovani, D. (2011). Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 176, 1812–1822.

    Article  Google Scholar 

  • Mordike, B., & Lukáč, P. (2006). Magnesium technology: Metallurgy, design data, applications. Heidelberg: Springer.

    Google Scholar 

  • Mueller, P. P., May, T., Perz, A., Hauser, H., & Peuster, M. (2006). Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 27, 2193–2200.

    Article  Google Scholar 

  • Murni, N. S., Dambatta, M. S., Yeap, S. K., Froemming, G. R. A., & Hermawan, H. (2015). Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells. Materials Science and Engineering C: Materials for Biological Applications, 49, 560–566.

    Article  Google Scholar 

  • Nair, L. S., & Laurencin, C. T. (2006). Polymers as biomaterials for tissue engineering and controlled drug delivery. Advances in Biochemical Engineering Biotechnology, 102, 47–90.

    Google Scholar 

  • Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32, 762–798.

    Article  Google Scholar 

  • Nasution, A. K., Murni, N. S., Sing, N. B., Idris, M. H., & Hermawan, H. (2015). Partially degradable friction-welded pure iron–stainless steel 316L bone pin. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103, 31–38.

    Article  Google Scholar 

  • Nayeb-Hashemi, A. A., & Clark J. B. (1988). Mg (Magnesium) Binary Alloy Phase Diagrams. Metals Park: ASM International.

    Google Scholar 

  • Prosek T., Nazarov, A., Bexell, U., Thierry, D. & Serak, J. (2008). Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions. Corrosion Science, 50, 2216–2231.

    Google Scholar 

  • Nettles, D. L., Chilkoti, A., & Setton, L. A. (2010). Applications of elastin-like polypeptides in tissue engineering. Advanced Drug Delivery Reviews, 62, 1479–1485.

    Article  Google Scholar 

  • Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8, 3888–3903.

    Article  Google Scholar 

  • Nriagu, J. (2007). Zinc Toxicity in Humans. School of Public Health, University of Michigan.

    Google Scholar 

  • Obst, M., & Steinbüchel, A. (2004). Microbial degradation of poly(amino acid)s. Biomacromolecules, 5, 1166–1176.

    Article  Google Scholar 

  • Ochs, B. G., Gonser, C. E., Baron, H. C., Stöckle, U., Badke, A., & Stuby, F. M. (2012). Refrakturen nach Entfernung von Osteosynthesematerialien. Der Unfallchirurg, 115, 323–329.

    Article  Google Scholar 

  • Okoroukwu, O. N., Green, G. R., & D’Souza, M. J. (2010). Development of albumin microspheres containing Sp H1-DNA complexes: A novel gene delivery system. Journal of Microencapsulation, 27, 142–149.

    Article  Google Scholar 

  • Okuma, T. (2001). Magnesium and bone strength. Nutrition, 17, 679–680.

    Article  Google Scholar 

  • Park, J. B., & Lakes, R. S. (2007). Biomaterials: An introduction. Heidelberg: Springer.

    Google Scholar 

  • Peuster, M., Kaese, V., Wuensch, G., Wuebbolt, P., Niemeyer, M., Boekenkamp, R., et al. (2001a). Dissolution of tungsten coils leads to device failure after transcatheter embolisation of pathologic vessels. Heart, 85, 703–704.

    Article  Google Scholar 

  • Peuster, M., Wohlsein, P., Brügmann, M., Ehlerding, M., Seidler, K., Fink, C., et al. (2001b). A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart, 86, 563–569.

    Article  Google Scholar 

  • Peuster, M., Fink, C., Wohlsein, P., Bruegmann, M., Günther, A., Kaese, V., et al. (2003). Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity. Biomaterials, 24, 393–399.

    Article  Google Scholar 

  • Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P., & von Schnakenburg, C. (2006). Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 27, 4955–4962.

    Article  Google Scholar 

  • Pitarresi, G., Saiano, F., Cavallaro, G., Mandracchia, D., & Palumbo, F. S. (2007). A new biodegradable and biocompatible hydrogel with polyaminoacid structure. International Journal of Pharmaceutics, 335, 130–137.

    Article  Google Scholar 

  • Puppi, D., Chiellini, F., Piras, A. M., & Chiellini, E. (2010). Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35, 403–440.

    Article  Google Scholar 

  • Qudong, W., Wenzhou, C., Xiaoqin, Z., Yizhen, L., Wenjiang, D., Yanping, Z., et al. (2001). Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy. Journal of Materials Science, 36, 3035–3040.

    Article  Google Scholar 

  • Rapta, P., Valachová, K., Gemeiner, P., & Šoltés, L. (2009). High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: Effects of the presence of manganese(ii) ions. Chemistry & Biodiversity, 6, 162–169.

    Article  Google Scholar 

  • Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E. (2013). Introduction—Biomaterials Science: An Evolving, Multidisciplinary Endeavor. In J. E. Lemons (Ed.), Biomaterials Science (3rd ed.). Academic Press.

    Google Scholar 

  • Regev, O., Khalfin, R., Zussman, E., & Cohen, Y. (2010). About the albumin structure in solution and related electro-spinnability issues. International Journal of Biological Macromolecules, 47, 261–265.

    Article  Google Scholar 

  • Rehm, K. E, Claes, L., Helling, H. J. & Hutchmaker, D. 1994. Application of a polylactide pin. An open clinical prospective study. In K. S. Leung, L. K. Hung, & P. C. Leung (Eds.), Biodegradable implants in fracture fixation. Hong Kong: World Scientific, 54.

    Google Scholar 

  • Ren, Y., Huang, J., Yang, K., Zhang, B., Yao, Z., & Wang, H. (2005). Study of bio-corrosion of pure magnesium. Jinshu Xuebao/Acta Metallurgica Sinica, 41, 1228–1232.

    Google Scholar 

  • Rettig, R., & Virtanen, S. (2008). Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research, Part A, 85, 167–175.

    Article  Google Scholar 

  • Rodrigues, D. (2014). Failure Mechanisms in Total-Joint and Dental Implants [Online]. http://danieli.wikidot.com/2-failure-mechanisms-in-total-joint-and-dental-implants.

  • Rokhlin, L. L. (2003). Magnesium alloys containing rare earth metals: structure and properties. London: Taylor & Francis, CRC Press.

    Google Scholar 

  • Saris, N. E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 294, 1–26.

    Article  Google Scholar 

  • Schinhammer, M., Hänzi, A. C., Löffler, J. F., & Uggowitzer, P. J. (2010). Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia, 6, 1705–1713.

    Article  Google Scholar 

  • Schömig, A., Kastrati, A., Mudra, H., Blasini, R., Schühlen, H., Klauss, V., et al. (1994). Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation, 90, 2716–2724.

    Article  Google Scholar 

  • Serre, C. M., Papillard, M., Chavassieux, P., Voegel, J. C., & Boivin, G. (1998). Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research, 42, 626–633.

    Article  Google Scholar 

  • Shastri, V. P. (2003). Non-degradable biocompatible polymers in medicine: Past, present and future. Current Pharmaceutical Biotechnology, 4, 331–337.

    Article  Google Scholar 

  • Shen, Z., Li, Y., Kohama, K., Oneill, B., & Bi, J. (2011). Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacological Research, 63, 51–58.

    Article  Google Scholar 

  • Siah, C. W., Trinder, D., & Olynyk, J. K. (2005). Iron overload. Clinica Chimica Acta, 358, 24–36.

    Article  Google Scholar 

  • Simon, R. D. (1971). Cyanophycin granules from the blue-green alga anabaena cylindrica: A reserve material consisting of copolymers of aspartic acid and arginine. Proceedings of the National Academy of Sciences, 68, 265–267.

    Article  Google Scholar 

  • Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-ε-caprolactone microspheres and nanospheres: An overview. International Journal of Pharmaceutics, 278, 1–23.

    Article  Google Scholar 

  • Song, G. (2007). Control of biodegradation of biocompatible magnesium alloys. Corrosion Science, 49, 1696–1701.

    Article  Google Scholar 

  • Song, G., & Song, S. (2007). A possible biodegradable magnesium implant material. Advanced Engineering Materials, 9, 298–302.

    Article  Google Scholar 

  • Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27, 1728–1734.

    Article  Google Scholar 

  • Suuronen, R., Pohjonen, T., Vasenius, J., & Vainionpää, S. (1992). Comparison of absorbable self-reinforced multilayer poly-1-lactide and metallic plates for the fixation of mandibular body osteotomies: An experimental study in sheep. Journal of Oral and Maxillofacial Surgery, 50, 255–262.

    Article  Google Scholar 

  • Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57, 399–411.

    Article  Google Scholar 

  • Tavares, S. S. M., Mainier, F. B., Zimmerman, F., Freitas, R., & Ajus, C. M. I. (2010). Characterization of prematurely failed stainless steel orthopedic implants. Engineering Failure Analysis, 17, 1246–1253.

    Article  Google Scholar 

  • Taylor, M. S., Daniels, A. U., Andriano, K. P., & Heller, J. (1994). Six bioabsorbable polymers: In vitro acute toxicity of accumulated degradation products. Journal of Applied Biomaterials, 5, 151–157.

    Article  Google Scholar 

  • Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21, 2405–2412.

    Article  Google Scholar 

  • Therin, M., Christel, P., Li, S., Garreau, H., & Vert, M. (1992). In vivo degradation of massive poly(α-hydroxy acids): Validation of in vitro findings. Biomaterials, 13, 594–600.

    Article  Google Scholar 

  • Tischler, E. H., & Austin, M. S. (2014). Why We Need Modular Stems and Necks for Primary THA [Online]. http://icjr.net/article_41_stems_necks.htm#.VNjk4fmG9ps.

  • Tormala, P. (1992). Biodegradable self-reinforced composite materials: Manufacturing structure and mechanical properties. Clinical Materials, 10, 29–34.

    Article  Google Scholar 

  • Uchida, M., Ito, A., Furukawa, K. S., Nakamura, K., Onimura, Y., Oyane, A., et al. (2005). Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite. Biomaterials, 26, 6924–6931.

    Article  Google Scholar 

  • Uhrich, K. E., Gupta, A., Thomas, T. T., Laurencin, C. T., & Langer, R. (1995). Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules, 28, 2184–2193.

    Article  Google Scholar 

  • Uhrich, K. E., Thomas, T. T., Laurencin, C. T., & Langer, R. (1997). In vitro degradation characteristics of poly(anhydride-imides) containing trimellitylimidoglycine. Journal of Applied Polymer Science, 63, 1401–1411.

    Article  Google Scholar 

  • Uhthoff, H. K., Poitras, P., & Backman, D. S. (2006). Internal plate fixation of fractures: Short history and recent developments. Journal of Orthopaedic Science, 11, 118–126.

    Article  Google Scholar 

  • Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49, 832–864.

    Article  Google Scholar 

  • Ulum, M. F., Arafat, A., Noviana, D., Yusop, A. H., Nasution, A. K., Abdul Kadir, M. R. & Hermawan, H. (2014). In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Materials Science and Engineering C: Materials for Biological Applications, 36, 336–344.

    Google Scholar 

  • Ulum, M. F., Nasution, A. K., Yusop, A. H., Arafat, A., Kadir, M. R. A., Juniantito, V., Noviana, D. & Hermawan, H. (2015). Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103B, 1354–1365.

    Google Scholar 

  • Vallet-Regí, M. (2010). Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie, 13, 174–185.

    Article  Google Scholar 

  • Venugopal, J., Low, S., Choon, A., Sampath Kumar, T. S. & Ramakrishna, S. (2008). Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. Journal of Materials Science: Materials in Medicine, 19, 2039–2046.

    Google Scholar 

  • Vojtěch, D., Kubásek, J., Šerák, J., & Novák, P. (2011). Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomaterialia, 7, 3515–3522.

    Article  Google Scholar 

  • Vormann, J. (2003). Magnesium: Nutrition and metabolism. Molecular Aspects of Medicine, 24, 27–37.

    Article  Google Scholar 

  • Vos, D. I., & Verhofstad, M. H. J. (2013). Indications for implant removal after fracture healing: A review of the literature. European Journal of Trauma and Emergency Surgery, 39, 327–337.

    Article  Google Scholar 

  • Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., & Tio, F. O. (2008). Short-term effects of biocorrodible iron stents in porcine coronary arteries. Journal of Interventional Cardiology, 21, 15–20.

    Article  Google Scholar 

  • Wang, H., Estrin, Y., & Zúberová, Z. (2008). Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters, 62, 2476–2479.

    Article  Google Scholar 

  • Wang, P., Hu, J., & Ma, P. X. (2009). The engineering of patient-specific, anatomically shaped, digits. Biomaterials, 30, 2735–2740.

    Article  Google Scholar 

  • Williams, A. A., Witten, D. M., Duester, R., & Chou, L. B. (2012). The benefits of implant removal from the foot and ankle. The Journal of Bone and Joint Surgery, 94, 1316–1320.

    Article  Google Scholar 

  • Witte, F. (2010). The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 6, 1680–1692.

    Article  Google Scholar 

  • Witte, F., & Eliezer, A. 2012. Biodegradable Metals. In N. Eliaz (Ed.), Degradation of Implant Materials. New York: Springer.

    Google Scholar 

  • Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26, 3557–3563.

    Article  Google Scholar 

  • Witte, F., Fischer, J., Nellesen, J., Crostack, H.-A., Kaese, V., Pisch, A., et al. (2006). In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 27, 1013–1018.

    Article  Google Scholar 

  • Witte, F., Feyerabend, F., Maier, P., Fischer, J., Störmer, M., Blawert, C., et al. (2007a). Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials, 28, 2163–2174.

    Article  Google Scholar 

  • Witte, F., Ulrich, H., Palm, C., & Willbold, E. (2007b). Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling. Journal of Biomedical Materials Research, Part A, 81, 757–765.

    Article  Google Scholar 

  • Witte, F., Ulrich, H., Rudert, M., & Willbold, E. (2007c). Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response. Journal of Biomedical Materials Research, Part A, 81, 748–756.

    Article  Google Scholar 

  • Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12, 63–72.

    Article  Google Scholar 

  • Wolf, F. I., & Cittadini, A. (2003). Chemistry and biochemistry of magnesium. Molecular Aspects of Medicine, 24, 3–9.

    Article  Google Scholar 

  • Xin, R., Wang, M., Gao, J., Liu, P., & Liu, Q. 2009. Effect of microstructure and texture on corrosion resistance of magnesium alloy. Materials Science Forum, 610, 1160–1163.

    Google Scholar 

  • Xu, L., Yu, G., Zhang, E., Pan, F., & Yang, K. (2007). In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research, Part A, 83A, 703–711.

    Article  Google Scholar 

  • Xu, W., Lu, X., Tan, L., & Yang, K. (2011). Study on properties of a novel biodegradable Fe-30Mn-1C alloy. Jinshu Xuebao/Acta Metallurgica Sinica, 47, 1342–1347.

    Google Scholar 

  • Yang, K., & Ren, Y. (2010). Nickel-free austenitic stainless steels for medical applications. Science and Technology of Advanced Materials, 11, 1–13.

    Article  Google Scholar 

  • Yarlagadda, P. K. D. V., Chandrasekharan, M., & Shyan, J. Y. M. (2005). Recent advances and current developments in tissue scaffolding. Biomedical Materials Engineering, 15, 159–177.

    Google Scholar 

  • Zberg, B., Uggowitzer, P. J., & Loffler, J. F. (2009). MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 8, 887–892.

    Article  Google Scholar 

  • Zhang, E., He, W., Du, H., & Yang, K. (2008). Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 488, 102–111.

    Article  Google Scholar 

  • Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., et al. (2010). Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia, 6, 626–640.

    Article  Google Scholar 

  • Zhang, X., Yuan, G., Mao, L., Niu, J., & Ding, W. (2012). Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Materials Letters, 66, 209–211.

    Article  Google Scholar 

  • Zhang, H. J., Zhang, D. F., Ma, C. H., & Guo, S. F. (2013). Improving mechanical properties and corrosion resistance of Mg-6Zn-Mn magnesium alloy by rapid solidification. Materials Letters, 92, 45–48.

    Article  Google Scholar 

  • Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering R: Reports, 77, 1–34.

    Article  Google Scholar 

  • Zhu, S., Huang, N., Xu, L., Zhang, Y., Liu, H., Sun, H., & Leng, Y. (2009). Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Materials Science and Engineering C: Materials for Biological Applications, 29, 1589–1592.

    Article  Google Scholar 

Download references

Acknowledgment

The authors deeply thank Mr. Ng Boon Sing for the discussion on corrosion assessment part, and Miss Zulaika Miswan for the help on the language. We acknowledge the support of the Fonds de démarrage from CHU de Québec Research Center, Laval University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra Hermawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nasution, A.K., Hermawan, H. (2016). Degradable Biomaterials for Temporary Medical Implants. In: Mahyudin, F., Hermawan, H. (eds) Biomaterials and Medical Devices. Advanced Structured Materials, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14845-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14845-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14844-1

  • Online ISBN: 978-3-319-14845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics