Degradable Biomaterials for Temporary Medical Implants

  • Ahmad Kafrawi Nasution
  • Hendra HermawanEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 58)


Degradable biomaterials bring possibilities to fabricate medical implants that function for a determined period related to clinical events such as healing. They can be made on the basis of polymers, ceramics and metals. These metals, which are expected to corrode gradually in vivo with an appropriate host response and then dissolve completely upon fulfilling the mission to assist with tissue healing, are known as biodegradable metals. They constitute a novel class of bioactive biomaterials which supports the healing process of temporary clinical problems. Three classes of metals have been explored: magnesium-, zinc- and iron-based alloys. Three targeted applications are envisaged: orthopaedic, cardiovascular and pediatric implants. Three levels of investigations have been conducted: in vitro, in vivo and clinical trials. Discussion on standardization has been initiated since 2013 with representatives from ISO, DIN and ASTM and drafts of comprehensive standards are now under preparation. The field of biodegradable metals is exciting and witnessing more development in the future including new advanced alloys and new real breakthrough that leads to its clinical translation. This chapter starts with a discussion on biodegradable polymers to gain important lessons learned for advancing the research in biodegradable metals, the new emerging research interest in the forefront of biomaterials loaded with full of great expectations.


Biodegradable Biomaterials Corrosion Metals Polymers 



The authors deeply thank Mr. Ng Boon Sing for the discussion on corrosion assessment part, and Miss Zulaika Miswan for the help on the language. We acknowledge the support of the Fonds de démarrage from CHU de Québec Research Center, Laval University.


  1. Adams, S. B., Shamji, M. F., Nettles, D. L., Hwang, P., & Setton, L. A. (2009). Sustained release of antibiotics from injectable and thermally responsive polypeptide depots. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 90B, 67–74.CrossRefGoogle Scholar
  2. Aghion, E., Levy, G., & Ovadia, S. (2012). In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy. Journal of Materials Science Materials in Medicine, 23, 805–812.CrossRefGoogle Scholar
  3. Akbari, H., D’Emanuele, A., & Attwood, D. (1998). Effect of geometry on the erosion characteristics of polyanhydride matrices. International Journal of Pharmaceutics, 160, 83–89.CrossRefGoogle Scholar
  4. Al-Assaf, S., Navaratnam, S., Parsons, B. J., & Phillips, G. O. (2003). Chain scission of hyaluronan by peroxynitrite. Archives of Biochemistry and Biophysics, 411, 73–82.CrossRefGoogle Scholar
  5. Ambrosio, L. (2009). Biomedical composites. Cambridge: Woodhead Publishing.Google Scholar
  6. Andriano, K. P., Tabata, Y., Ikada, Y., & Heller, J. (1999). In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. Journal of Biomedical Materials Research, 48, 602–612.CrossRefGoogle Scholar
  7. Bach, F. W., Schaper, M., & Jaschik, C. (2003). Influence of lithium on HCP magnesium alloys. Materials Science Forum, 419–422, 1037.CrossRefGoogle Scholar
  8. Barrows, T. (1986). Degradable implant materials: A review of synthetic absorbable polymers and their applications. Clinical Materials, 1, 233–257.CrossRefGoogle Scholar
  9. Bergsma, J. E., de Bruijn, W. C., Rozema, F. R., Bos, R. R. M., & Boering, G. (1995). Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials, 16, 25–31.CrossRefGoogle Scholar
  10. Bessa, P. C., Machado, R., Nürnberger, S., Dopler, D., Banerjee, A., Cunha, A. M., et al. (2010). Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. Journal of Controlled Release, 142, 312–318.CrossRefGoogle Scholar
  11. Bidwell III, G. L., Fokt, I., Priebe, W., & Raucher, D. (2007). Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochemical Pharmacology, 73, 620–631.Google Scholar
  12. Black, J. T., & Kohser, R. A. (2008). DeGarmo’s Materials and Processes in Manufacturing. New York: Wiley.Google Scholar
  13. Bostman (1991). Current concepts review: Absorbable implants for fixation of fractures. Journal of Bone Joint Surgery, 73-A, 148–153.Google Scholar
  14. Bowen, P. K., Drelich, J., & Goldman, J. (2013). Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials, 25, 2577–2582.CrossRefGoogle Scholar
  15. Bushnell, B. D., McWilliams, A. D., Whitener, G. B., & Messer, T. M. (2008). Early clinical experience with collagen nerve tubes in digital nerve repair. The Journal of Hand Surgery, 33, 1081–1087.CrossRefGoogle Scholar
  16. Chan, P. S., Caron, J. P., Rosa, G. J. M., & Orth, M. W. (2005). Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthritis and Cartilage, 13, 387–394. Google Scholar
  17. Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23, 1273–1335.CrossRefGoogle Scholar
  18. Chen, H., Zhang, E., & Yang, K. (2014). Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application. Materials Science and Engineering C: Materials for Biological Applications, 34, 201–206.CrossRefGoogle Scholar
  19. Cheng, J., Huang, T., & Zheng, Y. F. (2014). Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. Journal of Biomedical Materials Research, Part A, 102, 2277–2287.CrossRefGoogle Scholar
  20. Cheng, J., Huang, T., & Zheng, Y. F. (2015). Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Materials Science and Engineering C: Materials for Biological Applications, 48, 679–687.CrossRefGoogle Scholar
  21. Cheung, H.-Y., Lau, K.-T., Lu, T.-P., & Hui, D. (2007). A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B Engineering, 38, 291–300.CrossRefGoogle Scholar
  22. Choi, J. S., Yang, H.-J., Kim, B. S., Kim, J. D., Kim, J. Y., Yoo, B., et al. (2009). Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. Journal of Controlled Release, 139, 2–7.CrossRefGoogle Scholar
  23. Chuang, V. G. T., Kragh-Hansen, U., & Otagiri, M. (2002). Pharmaceutical strategies utilizing recombinant human serum albumin. Pharmaceutical Research, 19, 569–577.CrossRefGoogle Scholar
  24. Conley Wake, M., Gerecht, P. D., Lu, L., & Mikos, A. G. (1998). Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro. Biomaterials, 19, 1255–1268.Google Scholar
  25. Dambatta, M. S., Izman, S., Hermawan, H., & Kurniawan, D. (2013). Influence of heat treatment cooling mediums on the degradation property of biodegradable Zn-3Mg alloy. Advanced Materials Research, 845, 7–11.CrossRefGoogle Scholar
  26. Drynda, A., Hassel, T., Bach, F. W., & Peuster, M. (2014). In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 00, 000–000.Google Scholar
  27. Dziuba, D., Meyer-Lindenberg, A., Seitz, J. M., Waizy, H., Angrisani, N., & Reifenrath, J. (2013). Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomaterialia, 9, 8548–8560.CrossRefGoogle Scholar
  28. El-Omar, M. M., Dangas, G., Iakovou, I., & Mehran, R. (2001). Update on in-stent restenosis. Current Interventional Cardiology Reports, 3, 296–305.Google Scholar
  29. Erin, G., & Robert, T. T. (2005). Fibrillar Fibrin Gels. Scaffolding in Tissue Engineering. London: CRC Press.Google Scholar
  30. Fontcave, M., & Pierre, J. L. (1993). Iron: Metabolism, toxicity and therapy. Biochimie, 73, 767–773.CrossRefGoogle Scholar
  31. Fosmire, G. J. (1990). Zinc toxicity. American Journal of Clinical Nutrition, 51, 225–227.Google Scholar
  32. Gao, J., Qiao, L., Wang, Y., & Xin, R. (2010). Research on bone inducement of magnesium in vivo. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 39, 296–299.Google Scholar
  33. Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Progress in Materials Science, 54, 397–425.CrossRefGoogle Scholar
  34. Gong, H., Wang, K., Strich, R., & Zhou, J. G. (2015). In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103B, 1632–1640.Google Scholar
  35. Gray, J. E., & Luan, B. (2002). Protective coatings on magnesium and its alloys: A critical review. Journal of Alloys and Compounds, 336, 88–113.CrossRefGoogle Scholar
  36. Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J., & Lee, R. C. (1988). Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. Journal of Orthopaedic Research, 6, 777–792.CrossRefGoogle Scholar
  37. Griffith, L. G. (2000). Polymeric biomaterials. Acta Materialia, 48, 263–277.CrossRefGoogle Scholar
  38. Gu, X., Zheng, Y., Cheng, Y., Zhong, S., & Xi, T. (2009). In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 30, 484–498.CrossRefGoogle Scholar
  39. Gunatillake, P. A., & Adhikari, R. (2003). Biodegradable synthetic polymers for tissue engineering. European Cells and Materials, 5, 1–16.Google Scholar
  40. Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12, 301–347.Google Scholar
  41. Habibovic, P., Barrère, F., Blitterswijk, C. A. V., Groot, K. D., & Layrolle, P. (2002). Biomimetic hydroxyapatite coating on metal implants. Journal of American Ceramics Society, 83, 517–522.Google Scholar
  42. Hacker, M. C., & Mikos, A. G. (2011). Chapter 33: Synthetic Polymers. In A. A. L. A. T. Nerem (Ed.), Principles of Regenerative Medicine (2nd ed.). San Diego: Academic Press.Google Scholar
  43. Hallab, N., Merritt, K., & Jacobs, J. J. (2001). Metal sensitivity in patients with orthopaedic implants. Journal of Bone and Joint Surgery American Volume, 83-A, 428–436.Google Scholar
  44. Hänzi, A. C., Gerber, I., Schinhammer, M., Löffler, J. F., & Uggowitzer, P. J. (2010). On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomaterialia, 6, 1824–1833.CrossRefGoogle Scholar
  45. Hartwig, A. (2001). Role of magnesium in genomic stability. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis, 475, 113–121.CrossRefGoogle Scholar
  46. Henderson, S. E., Verdelis, K., Maiti, S., Pal, S., Chung, W. L., Chou, D.-T., et al. (2014). Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomaterialia, 10, 2323–2332.CrossRefGoogle Scholar
  47. Hermawan, H. (2012). Biodegradable Metals: From Concept to Applications. Heidelberg: Springer.CrossRefGoogle Scholar
  48. Hermawan, H., & Mantovani, D. (2009). Degradable metallic biomaterials: The concept, current developments and future directions. Minerva Biotecnologica, 21, 207–216.Google Scholar
  49. Hermawan, H., Alamdari, H., Mantovani, D., & Dubé, D. (2008). Iron-manganese: New class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy, 51, 38–45.CrossRefGoogle Scholar
  50. Hermawan, H., Dubé, D., & Mantovani, D. (2010a). Degradable metallic biomaterials: Design and development of Fe–Mn alloys for stents. Journal of Biomedical Materials Research, Part A, 93A, 1–11.Google Scholar
  51. Hermawan, H., Purnama, A., Dube, D., Couet, J., & Mantovani, D. (2010b). Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomaterialia, 6, 1852–1860.CrossRefGoogle Scholar
  52. Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W., & Haverich, A. (2003). Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart, 89, 651–656.CrossRefGoogle Scholar
  53. Hoffman, A. S. (1996). Classes of Materials Used in Medicine. In B. D. Ratner, A. S. Hoffman, F. J. Schoen & J. E. Lemons (Eds.), Biomaterials Science: An Introduction to Materials in Medicine. San Diego: Academic Press.Google Scholar
  54. Hofstetter, J., Martinelli, E., Weinberg, A. M., Becker, M., Mingler, B., Uggowitzer, P. J., & Löffler, J. F. (2015). Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corrosion Science, 91, 29–36.CrossRefGoogle Scholar
  55. Hoog, C. O., Birbilis, N., Zhang, M. X., & Estrin, Y. (2008). Surface grain size effects on the corrosion of magnesium. Key Engineering Materials, 384, 229–240.CrossRefGoogle Scholar
  56. Hornberger, H., Virtanen, S., & Boccaccini, A. R. (2012). Biomedical coatings on magnesium alloys: A review. Acta Biomaterialia, 8, 2442–2455.CrossRefGoogle Scholar
  57. Hort, N., Huang, Y., Fechner, D., Störmer, M., Blawert, C., Witte, F., et al. (2010). Magnesium alloys as implant materials-Principles of property design for Mg-RE alloys. Acta Biomaterialia, 6, 1714–1725.CrossRefGoogle Scholar
  58. Housh, S., & Mikucki, B. (1990). Selection and Application of Magnesium and Magnesium Alloys. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International.Google Scholar
  59. Huang, J., Ren, Y., Zhang, B., & Yang, K. (2007). Study on biocompatibility of magnesium and its alloys. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 36, 1102–1105.Google Scholar
  60. Ilich, J. Z., & Kerstetter, J. E. (2000). Nutrition in bone health revisited: A story beyond calcium. Journal of the American College of Nutrition, 19, 715–737.CrossRefGoogle Scholar
  61. James, K., & Kohn, J. (1996). New Biomaterials for tissue engineering. MRS Bull. November, 22.Google Scholar
  62. Jenkins, M. (2007). Biomedical polymers. Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
  63. Kaesel, V., Tai, P. T., Bach, F. W., Haferkamp, H., Witte, F., & Windhagen, H. (2005). Approach to control the corrosion of magnesium by alloying. Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications. Wiley-VCH.Google Scholar
  64. Kanerva, L., & Förström, L. (2001). Allergic nickel and chromate hand dermatitis induced by orthopaedic metal implant. Contact Dermatitis, 44, 103–104.CrossRefGoogle Scholar
  65. Kannan, M. B., & Raman, R. K. S. (2008). In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 29, 2306–2314.CrossRefGoogle Scholar
  66. Kim, W. C., Kim, J. G., Lee, J. Y., & Seok, H. K. (2008). Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, 62, 4146–4148.CrossRefGoogle Scholar
  67. Kirkland, N. T., Birbilis, N., & Staiger, M. P. (2012). Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomaterialia, 8, 925–936.CrossRefGoogle Scholar
  68. Kishida, A., Murakami, K., Goto, H., Akashi, M., Kubota, H., & Endo, T. (1998). Polymer drugs and polymeric drugs X: Slow release of B-fluorouracil from biodegradable poly(γ-glutamic acid) and its benzyl ester matrices. Journal of Bioactive and Compatible Polymers, 13, 270–278.Google Scholar
  69. Kokubo, T. (2008). Bioceramics and their clinical applications. Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
  70. Kosir, M. A., Quinn, C. C. V., Wang, W., & Tromp, G. (2000). Matrix glycosaminoglycans in the growth phase of fibroblasts: More of the story in wound healing. Journal of Surgical Research, 92, 45–52.CrossRefGoogle Scholar
  71. Krane, S. (2008). The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids, 35, 703–710.CrossRefGoogle Scholar
  72. Kraus, T., Fischerauer, S. F., Hänzi, A. C., Uggowitzer, P. J., Löffler, J. F., & Weinberg, A. M. (2012). Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomaterialia, 8, 1230–1238.CrossRefGoogle Scholar
  73. Kraus, T., Moszner, F., Fischerauer, S., Fiedler, M., Martinelli, E., Eichler, J., et al. (2014). Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta Biomaterialia, 10, 3346–3353.CrossRefGoogle Scholar
  74. Kubásek, J., Vojtěch, D., Jablonská, E., Pospíšilová, I., Lipov, J., & Ruml, T. (2016). Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Materials Science and Engineering C: Materials for Biological Applications, 58, 24–35.Google Scholar
  75. Kulkarni, R. K., Moore, E. G., Hegyeli, A. F., & Leonard, F. (1971). Biodegradable poly(lactic acid) polymers. Journal of Biomedical Materials Research, 5, 169–181.CrossRefGoogle Scholar
  76. Lahann, J., Klee, D., Thelen, H., Bienert, H., Vorwerk, D., & Hocker, H. (1999). Improvement of haemocompatibility of metallic stents by polymer coating. Journal of Materials Science Materials in Medicine, 10, 443–448.CrossRefGoogle Scholar
  77. Lakshmi, S., Katti, D. S., & Laurencin, C. T. (2003). Biodegradable polyphosphazenes for drug delivery applications. Advanced Drug Delivery Reviews, 55, 467–482.CrossRefGoogle Scholar
  78. Lee, J.-Y., Han, G., Kim, Y.-C., Byun, J.-Y., Jang, J.-I., Seok, H.-K., & Yang, S.-J. (2009). Effects of impurities on the biodegradation behavior of pure magnesium. Metals and Materials International, 15, 955–961.CrossRefGoogle Scholar
  79. Li, C. (2002). Poly(L-glutamic acid)-anticancer drug conjugates. Advanced Drug Delivery Reviews, 54, 695–713.CrossRefGoogle Scholar
  80. Li, L., Gao, J., & Wang, Y. (2004). Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coating Technology, 185, 92–98.CrossRefGoogle Scholar
  81. Li, Z., Gu, X., Lou, S., & Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as biodegradable materials within bones. Biomaterials, 29, 1329–1344.CrossRefGoogle Scholar
  82. Li, H., Zheng, Y., & Qin, L. (2014). Progress of biodegradable metals. Progress in Natural Science: Materials International, 24, 414–422.CrossRefGoogle Scholar
  83. Liu, B., & Zheng, Y. F. (2011a). Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 7, 1407–1420.CrossRefGoogle Scholar
  84. Liu, B., & Zheng, Y. F. (2011b). Effects of alloying elements (Mn Co, Al, W, Sn, B, C and A. W. 2002. Interfacial bioengineering to enhance surface biocompatibility. Medical Device Technology, 13, 18–21.Google Scholar
  85. Liu, X., Wang, X.-M., Chen, Z., Cui, F.-Z., Liu, H.-Y., Mao, K., & Wang, Y. (2010). Injectable bone cement based on mineralized collagen. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 94B, 72–79.Google Scholar
  86. Liu, B., Zheng, Y. F., & Ruan, L. (2011). In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, 65, 540–543.CrossRefGoogle Scholar
  87. Li, N., & Zheng, Y. (2013). Novel magnesium alloys developed for biomedical application: A review. Journal of Materials Science and Technology, 29, 489–502.Google Scholar
  88. Lloyd, A. W. (2002). Interfacial bioengineering to enhance surface biocompatibility. Medical Device Technology, 13, 18–21.Google Scholar
  89. Makar, G. L., & Kruger, J. (1993). Corrosion of magnesium. International Materials Reviews, 38, 138–153.CrossRefGoogle Scholar
  90. Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., et al. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of the Royal Society, Interface, 4, 999–1030.CrossRefGoogle Scholar
  91. Matsuno, T., Nakamura, T., Kuremoto, K.-I., Notazawa, S., Nakahara, T., Hashimoto, Y., et al. (2006). Development of β-tricalcium phosphate/collagen sponge composite for bone regeneration. Dental Materials Journal, 25, 138–144.CrossRefGoogle Scholar
  92. Maurus, P. B., & Kaeding, C. C. (2004). Bioabsorbable implant material review. Operative Techniques in Sports Medicine, 12, 158–160.CrossRefGoogle Scholar
  93. McCall, K. A., Huang, C.-C., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of Nutrition, 130, 1437S–1446S.Google Scholar
  94. Meslemani, D., & Kellman, R. M. (2012). Recent advances in fixation of the craniomaxillofacial skeleton. Current Opinion in Otolaryngology and Head and Neck Surgery, 20, 304–309.CrossRefGoogle Scholar
  95. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.CrossRefGoogle Scholar
  96. Mithieux, S. M., Rasko, J. E. J., & Weiss, A. S. (2004). Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials, 25, 4921–4927.CrossRefGoogle Scholar
  97. Mohd Daud, N., Sing, N. B., Yusop, A. H., Abdul Majid, F. A., & Hermawan, H. (2014). Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds. Journal of Orthopaedic Translation, 2, 177–184.Google Scholar
  98. Moravej, M., Prima, F., Fiset, M., & Mantovani, D. (2010a). Electroformed iron as new biomaterial for degradable stents: Development process and structure–properties relationship. Acta Biomaterialia, 6, 1726–1735.CrossRefGoogle Scholar
  99. Moravej, M., Purnama, A., Fiset, M., Couet, J., & Mantovani, D. (2010b). Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. Acta Biomaterialia, 6, 1843–1851.CrossRefGoogle Scholar
  100. Moravej, M., Amira, S., Prima, F., Rahem, A., Fiset, M., & Mantovani, D. (2011). Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 176, 1812–1822.CrossRefGoogle Scholar
  101. Mordike, B., & Lukáč, P. (2006). Magnesium technology: Metallurgy, design data, applications. Heidelberg: Springer.Google Scholar
  102. Mueller, P. P., May, T., Perz, A., Hauser, H., & Peuster, M. (2006). Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 27, 2193–2200.CrossRefGoogle Scholar
  103. Murni, N. S., Dambatta, M. S., Yeap, S. K., Froemming, G. R. A., & Hermawan, H. (2015). Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells. Materials Science and Engineering C: Materials for Biological Applications, 49, 560–566.CrossRefGoogle Scholar
  104. Nair, L. S., & Laurencin, C. T. (2006). Polymers as biomaterials for tissue engineering and controlled drug delivery. Advances in Biochemical Engineering Biotechnology, 102, 47–90.Google Scholar
  105. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32, 762–798.CrossRefGoogle Scholar
  106. Nasution, A. K., Murni, N. S., Sing, N. B., Idris, M. H., & Hermawan, H. (2015). Partially degradable friction-welded pure iron–stainless steel 316L bone pin. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103, 31–38.CrossRefGoogle Scholar
  107. Nayeb-Hashemi, A. A., & Clark J. B. (1988). Mg (Magnesium) Binary Alloy Phase Diagrams. Metals Park: ASM International.Google Scholar
  108. Prosek T., Nazarov, A., Bexell, U., Thierry, D. & Serak, J. (2008). Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions. Corrosion Science, 50, 2216–2231.Google Scholar
  109. Nettles, D. L., Chilkoti, A., & Setton, L. A. (2010). Applications of elastin-like polypeptides in tissue engineering. Advanced Drug Delivery Reviews, 62, 1479–1485.CrossRefGoogle Scholar
  110. Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8, 3888–3903.CrossRefGoogle Scholar
  111. Nriagu, J. (2007). Zinc Toxicity in Humans. School of Public Health, University of Michigan.Google Scholar
  112. Obst, M., & Steinbüchel, A. (2004). Microbial degradation of poly(amino acid)s. Biomacromolecules, 5, 1166–1176.CrossRefGoogle Scholar
  113. Ochs, B. G., Gonser, C. E., Baron, H. C., Stöckle, U., Badke, A., & Stuby, F. M. (2012). Refrakturen nach Entfernung von Osteosynthesematerialien. Der Unfallchirurg, 115, 323–329.CrossRefGoogle Scholar
  114. Okoroukwu, O. N., Green, G. R., & D’Souza, M. J. (2010). Development of albumin microspheres containing Sp H1-DNA complexes: A novel gene delivery system. Journal of Microencapsulation, 27, 142–149.CrossRefGoogle Scholar
  115. Okuma, T. (2001). Magnesium and bone strength. Nutrition, 17, 679–680.CrossRefGoogle Scholar
  116. Park, J. B., & Lakes, R. S. (2007). Biomaterials: An introduction. Heidelberg: Springer.Google Scholar
  117. Peuster, M., Kaese, V., Wuensch, G., Wuebbolt, P., Niemeyer, M., Boekenkamp, R., et al. (2001a). Dissolution of tungsten coils leads to device failure after transcatheter embolisation of pathologic vessels. Heart, 85, 703–704.CrossRefGoogle Scholar
  118. Peuster, M., Wohlsein, P., Brügmann, M., Ehlerding, M., Seidler, K., Fink, C., et al. (2001b). A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart, 86, 563–569.CrossRefGoogle Scholar
  119. Peuster, M., Fink, C., Wohlsein, P., Bruegmann, M., Günther, A., Kaese, V., et al. (2003). Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity. Biomaterials, 24, 393–399.CrossRefGoogle Scholar
  120. Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P., & von Schnakenburg, C. (2006). Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 27, 4955–4962.CrossRefGoogle Scholar
  121. Pitarresi, G., Saiano, F., Cavallaro, G., Mandracchia, D., & Palumbo, F. S. (2007). A new biodegradable and biocompatible hydrogel with polyaminoacid structure. International Journal of Pharmaceutics, 335, 130–137.CrossRefGoogle Scholar
  122. Puppi, D., Chiellini, F., Piras, A. M., & Chiellini, E. (2010). Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35, 403–440.CrossRefGoogle Scholar
  123. Qudong, W., Wenzhou, C., Xiaoqin, Z., Yizhen, L., Wenjiang, D., Yanping, Z., et al. (2001). Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy. Journal of Materials Science, 36, 3035–3040.CrossRefGoogle Scholar
  124. Rapta, P., Valachová, K., Gemeiner, P., & Šoltés, L. (2009). High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: Effects of the presence of manganese(ii) ions. Chemistry & Biodiversity, 6, 162–169.CrossRefGoogle Scholar
  125. Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E. (2013). Introduction—Biomaterials Science: An Evolving, Multidisciplinary Endeavor. In J. E. Lemons (Ed.), Biomaterials Science (3rd ed.). Academic Press.Google Scholar
  126. Regev, O., Khalfin, R., Zussman, E., & Cohen, Y. (2010). About the albumin structure in solution and related electro-spinnability issues. International Journal of Biological Macromolecules, 47, 261–265.CrossRefGoogle Scholar
  127. Rehm, K. E, Claes, L., Helling, H. J. & Hutchmaker, D. 1994. Application of a polylactide pin. An open clinical prospective study. In K. S. Leung, L. K. Hung, & P. C. Leung (Eds.), Biodegradable implants in fracture fixation. Hong Kong: World Scientific, 54.Google Scholar
  128. Ren, Y., Huang, J., Yang, K., Zhang, B., Yao, Z., & Wang, H. (2005). Study of bio-corrosion of pure magnesium. Jinshu Xuebao/Acta Metallurgica Sinica, 41, 1228–1232.Google Scholar
  129. Rettig, R., & Virtanen, S. (2008). Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research, Part A, 85, 167–175.CrossRefGoogle Scholar
  130. Rodrigues, D. (2014). Failure Mechanisms in Total-Joint and Dental Implants [Online].
  131. Rokhlin, L. L. (2003). Magnesium alloys containing rare earth metals: structure and properties. London: Taylor & Francis, CRC Press.Google Scholar
  132. Saris, N. E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 294, 1–26.CrossRefGoogle Scholar
  133. Schinhammer, M., Hänzi, A. C., Löffler, J. F., & Uggowitzer, P. J. (2010). Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia, 6, 1705–1713.CrossRefGoogle Scholar
  134. Schömig, A., Kastrati, A., Mudra, H., Blasini, R., Schühlen, H., Klauss, V., et al. (1994). Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation, 90, 2716–2724.CrossRefGoogle Scholar
  135. Serre, C. M., Papillard, M., Chavassieux, P., Voegel, J. C., & Boivin, G. (1998). Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research, 42, 626–633.CrossRefGoogle Scholar
  136. Shastri, V. P. (2003). Non-degradable biocompatible polymers in medicine: Past, present and future. Current Pharmaceutical Biotechnology, 4, 331–337.CrossRefGoogle Scholar
  137. Shen, Z., Li, Y., Kohama, K., Oneill, B., & Bi, J. (2011). Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacological Research, 63, 51–58.CrossRefGoogle Scholar
  138. Siah, C. W., Trinder, D., & Olynyk, J. K. (2005). Iron overload. Clinica Chimica Acta, 358, 24–36.CrossRefGoogle Scholar
  139. Simon, R. D. (1971). Cyanophycin granules from the blue-green alga anabaena cylindrica: A reserve material consisting of copolymers of aspartic acid and arginine. Proceedings of the National Academy of Sciences, 68, 265–267.CrossRefGoogle Scholar
  140. Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-ε-caprolactone microspheres and nanospheres: An overview. International Journal of Pharmaceutics, 278, 1–23.CrossRefGoogle Scholar
  141. Song, G. (2007). Control of biodegradation of biocompatible magnesium alloys. Corrosion Science, 49, 1696–1701.CrossRefGoogle Scholar
  142. Song, G., & Song, S. (2007). A possible biodegradable magnesium implant material. Advanced Engineering Materials, 9, 298–302.CrossRefGoogle Scholar
  143. Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27, 1728–1734.CrossRefGoogle Scholar
  144. Suuronen, R., Pohjonen, T., Vasenius, J., & Vainionpää, S. (1992). Comparison of absorbable self-reinforced multilayer poly-1-lactide and metallic plates for the fixation of mandibular body osteotomies: An experimental study in sheep. Journal of Oral and Maxillofacial Surgery, 50, 255–262.CrossRefGoogle Scholar
  145. Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57, 399–411.CrossRefGoogle Scholar
  146. Tavares, S. S. M., Mainier, F. B., Zimmerman, F., Freitas, R., & Ajus, C. M. I. (2010). Characterization of prematurely failed stainless steel orthopedic implants. Engineering Failure Analysis, 17, 1246–1253.CrossRefGoogle Scholar
  147. Taylor, M. S., Daniels, A. U., Andriano, K. P., & Heller, J. (1994). Six bioabsorbable polymers: In vitro acute toxicity of accumulated degradation products. Journal of Applied Biomaterials, 5, 151–157.CrossRefGoogle Scholar
  148. Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21, 2405–2412.CrossRefGoogle Scholar
  149. Therin, M., Christel, P., Li, S., Garreau, H., & Vert, M. (1992). In vivo degradation of massive poly(α-hydroxy acids): Validation of in vitro findings. Biomaterials, 13, 594–600.CrossRefGoogle Scholar
  150. Tischler, E. H., & Austin, M. S. (2014). Why We Need Modular Stems and Necks for Primary THA [Online].
  151. Tormala, P. (1992). Biodegradable self-reinforced composite materials: Manufacturing structure and mechanical properties. Clinical Materials, 10, 29–34.CrossRefGoogle Scholar
  152. Uchida, M., Ito, A., Furukawa, K. S., Nakamura, K., Onimura, Y., Oyane, A., et al. (2005). Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite. Biomaterials, 26, 6924–6931.CrossRefGoogle Scholar
  153. Uhrich, K. E., Gupta, A., Thomas, T. T., Laurencin, C. T., & Langer, R. (1995). Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules, 28, 2184–2193.CrossRefGoogle Scholar
  154. Uhrich, K. E., Thomas, T. T., Laurencin, C. T., & Langer, R. (1997). In vitro degradation characteristics of poly(anhydride-imides) containing trimellitylimidoglycine. Journal of Applied Polymer Science, 63, 1401–1411.CrossRefGoogle Scholar
  155. Uhthoff, H. K., Poitras, P., & Backman, D. S. (2006). Internal plate fixation of fractures: Short history and recent developments. Journal of Orthopaedic Science, 11, 118–126.CrossRefGoogle Scholar
  156. Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49, 832–864.CrossRefGoogle Scholar
  157. Ulum, M. F., Arafat, A., Noviana, D., Yusop, A. H., Nasution, A. K., Abdul Kadir, M. R. & Hermawan, H. (2014). In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Materials Science and Engineering C: Materials for Biological Applications, 36, 336–344.Google Scholar
  158. Ulum, M. F., Nasution, A. K., Yusop, A. H., Arafat, A., Kadir, M. R. A., Juniantito, V., Noviana, D. & Hermawan, H. (2015). Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103B, 1354–1365.Google Scholar
  159. Vallet-Regí, M. (2010). Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie, 13, 174–185.CrossRefGoogle Scholar
  160. Venugopal, J., Low, S., Choon, A., Sampath Kumar, T. S. & Ramakrishna, S. (2008). Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. Journal of Materials Science: Materials in Medicine, 19, 2039–2046.Google Scholar
  161. Vojtěch, D., Kubásek, J., Šerák, J., & Novák, P. (2011). Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomaterialia, 7, 3515–3522.CrossRefGoogle Scholar
  162. Vormann, J. (2003). Magnesium: Nutrition and metabolism. Molecular Aspects of Medicine, 24, 27–37.CrossRefGoogle Scholar
  163. Vos, D. I., & Verhofstad, M. H. J. (2013). Indications for implant removal after fracture healing: A review of the literature. European Journal of Trauma and Emergency Surgery, 39, 327–337.CrossRefGoogle Scholar
  164. Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., & Tio, F. O. (2008). Short-term effects of biocorrodible iron stents in porcine coronary arteries. Journal of Interventional Cardiology, 21, 15–20.CrossRefGoogle Scholar
  165. Wang, H., Estrin, Y., & Zúberová, Z. (2008). Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters, 62, 2476–2479.CrossRefGoogle Scholar
  166. Wang, P., Hu, J., & Ma, P. X. (2009). The engineering of patient-specific, anatomically shaped, digits. Biomaterials, 30, 2735–2740.CrossRefGoogle Scholar
  167. Williams, A. A., Witten, D. M., Duester, R., & Chou, L. B. (2012). The benefits of implant removal from the foot and ankle. The Journal of Bone and Joint Surgery, 94, 1316–1320.CrossRefGoogle Scholar
  168. Witte, F. (2010). The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 6, 1680–1692.CrossRefGoogle Scholar
  169. Witte, F., & Eliezer, A. 2012. Biodegradable Metals. In N. Eliaz (Ed.), Degradation of Implant Materials. New York: Springer.Google Scholar
  170. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26, 3557–3563.CrossRefGoogle Scholar
  171. Witte, F., Fischer, J., Nellesen, J., Crostack, H.-A., Kaese, V., Pisch, A., et al. (2006). In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 27, 1013–1018.CrossRefGoogle Scholar
  172. Witte, F., Feyerabend, F., Maier, P., Fischer, J., Störmer, M., Blawert, C., et al. (2007a). Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials, 28, 2163–2174.CrossRefGoogle Scholar
  173. Witte, F., Ulrich, H., Palm, C., & Willbold, E. (2007b). Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling. Journal of Biomedical Materials Research, Part A, 81, 757–765.CrossRefGoogle Scholar
  174. Witte, F., Ulrich, H., Rudert, M., & Willbold, E. (2007c). Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response. Journal of Biomedical Materials Research, Part A, 81, 748–756.CrossRefGoogle Scholar
  175. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12, 63–72.CrossRefGoogle Scholar
  176. Wolf, F. I., & Cittadini, A. (2003). Chemistry and biochemistry of magnesium. Molecular Aspects of Medicine, 24, 3–9.CrossRefGoogle Scholar
  177. Xin, R., Wang, M., Gao, J., Liu, P., & Liu, Q. 2009. Effect of microstructure and texture on corrosion resistance of magnesium alloy. Materials Science Forum, 610, 1160–1163.Google Scholar
  178. Xu, L., Yu, G., Zhang, E., Pan, F., & Yang, K. (2007). In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research, Part A, 83A, 703–711.CrossRefGoogle Scholar
  179. Xu, W., Lu, X., Tan, L., & Yang, K. (2011). Study on properties of a novel biodegradable Fe-30Mn-1C alloy. Jinshu Xuebao/Acta Metallurgica Sinica, 47, 1342–1347.Google Scholar
  180. Yang, K., & Ren, Y. (2010). Nickel-free austenitic stainless steels for medical applications. Science and Technology of Advanced Materials, 11, 1–13.CrossRefGoogle Scholar
  181. Yarlagadda, P. K. D. V., Chandrasekharan, M., & Shyan, J. Y. M. (2005). Recent advances and current developments in tissue scaffolding. Biomedical Materials Engineering, 15, 159–177.Google Scholar
  182. Zberg, B., Uggowitzer, P. J., & Loffler, J. F. (2009). MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 8, 887–892.CrossRefGoogle Scholar
  183. Zhang, E., He, W., Du, H., & Yang, K. (2008). Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 488, 102–111.CrossRefGoogle Scholar
  184. Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., et al. (2010). Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia, 6, 626–640.CrossRefGoogle Scholar
  185. Zhang, X., Yuan, G., Mao, L., Niu, J., & Ding, W. (2012). Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Materials Letters, 66, 209–211.CrossRefGoogle Scholar
  186. Zhang, H. J., Zhang, D. F., Ma, C. H., & Guo, S. F. (2013). Improving mechanical properties and corrosion resistance of Mg-6Zn-Mn magnesium alloy by rapid solidification. Materials Letters, 92, 45–48.CrossRefGoogle Scholar
  187. Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering R: Reports, 77, 1–34.CrossRefGoogle Scholar
  188. Zhu, S., Huang, N., Xu, L., Zhang, Y., Liu, H., Sun, H., & Leng, Y. (2009). Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Materials Science and Engineering C: Materials for Biological Applications, 29, 1589–1592.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Muhammadiyah University of RiauPekanbaruIndonesia
  2. 2.CHU de Quebec Research CenterLaval UniversityQuebec CityCanada

Personalised recommendations