Advertisement

Bioadhesion of Biomaterials

  • Siti SunarintyasEmail author
Chapter
  • 1.5k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 58)

Abstract

Biomaterials are widely used in many kinds of medical devices. The biomaterials used can be metal, polymer, ceramic or composites. Bioadhesion will be occured when the medical device contact to biological surface. There are many conditions where bioadhesion is beneficial and vice versa. The implantation of medical devices in the human body is not without risk. It is reported that implantable medical devices are an ideal interface for microorganisms. There are infections caused mainly by bacteria originating in the body. Some aspects influence bioadhesion of implantable medical devices including surface topography, chemical interaction, mechanical interaction and physiological interactions are discussed. The understanding of such aspects hopefully governs medical practitioners in controlling the medical devices bioadhesion process, then optimizing the desirable bioadhesion and removing the undesirable interactions. To complete the discussion on bioadhesion of biomaterials, it is also described some methods of bioadhesion testing including surface roughness measurement, contact angle measurement, surface topography evaluation and biofilm formation testing. At last, a perspective related to biomaterials used as medical devices is presented.

Keywords

Bioadhesion Biomaterial Medical device 

Notes

Acknowledgment

Mrs. Gusnaniar (BME, UGM), Mr. Dedy Kusuma (Dentistry, UGM) and Mr. Bonifasius Primario (Dentistry, UGM) are acknowledged for their kind help in preparing the pictures and literatures for this manuscript.

References

  1. Absolom, D. R., Francis, D. W., Zingg, W., van Oss, C. J., & Neumann, A. W. (1982). Phagocytosis of bacteria by platelets: Surface thermodynamics. Journal of Colloid and Interface Science, 85, 168–175.CrossRefGoogle Scholar
  2. Alagusundaram, M., Chengaiah, B., Gnanaprakash, K., Ramkanth, S., Chetty, M. C., & Dhachinamoorthi, D. (2010). Nasal drug delivery system—an overview. International Journal of Research in Pharmacy and Science, 1, 454–465.Google Scholar
  3. Alfonso, J. L., & Goldmann, W. H. (2003). Feeling the forces: Atomic force microscopy in cell biology. Life Sciences, 72, 2553–2560.CrossRefGoogle Scholar
  4. An, Y. H., Friedman, R. J., Draughn, R. A., Smith, E. A., Nicholson, J., & John, J. F. (1995). Rapid quantification of staphylococci adhered to titanium surfaces using image analyzed epifluorescence microscopy. Journal of Microbiol Methods, 24, 29–40.Google Scholar
  5. Andrade, J. D., Hlady, V., & Wei, A. P. (1992). Adsorption of complex proteins at interfaces. Pure and Applied Chemistry, 64, 1777–1781.CrossRefGoogle Scholar
  6. Ansalme, K., Ponche, A., & Ploux, L. (2011). Materials to control and measure cell function. Compre Biomater, 3, 235–255.CrossRefGoogle Scholar
  7. Asmussen, E., Hansen, E. K., & Peutzfeldt, A. (1991). Influence of the solubility parameter of intermediary resin on the effectiveness of the gluma bonding system. Journal of Dental Research, 70, 1290–1293.CrossRefGoogle Scholar
  8. Bacakova. (2004). Cell adhesion on artificial materials for tissue engineering. Physiological Research, 53, S35–S45.Google Scholar
  9. Baker, A. S., & Greenham, L. W. (1988). Release of gentamicin from acrylic bone cement: Elution and diffusion studies. Journal of Bone and Joint Surgery, 70A, 1551–1557.Google Scholar
  10. Balasundaram, G., Sato, M., & Webster, T. J. (2006). Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials, 27, 2798–2805.CrossRefGoogle Scholar
  11. Balasundaram, G., & Webster, T. J. (2006). A perspective on nanophase materials for orthopaedic implant applications. Journal of Materials Chemistry, 16, 3737–3745.CrossRefGoogle Scholar
  12. Bantjes, A. (1978). Clotting phenomena at the blood-polymer interface and development of blood compatible polymeric surfaces. British Polymer Journal, 10, 267–274.CrossRefGoogle Scholar
  13. Bauer, J. F. (2010). Wettability. Journal of Validation Technology, winter, 32–38.Google Scholar
  14. Bersmann, F., Lawrence, N., Hannig, M., Ziegler, C., & Gnaser, H. (2008). Protein films adsorbed on experimental dental materials: ToF-SIMS with multivariable data analysis. Analytical and Bioanalytical Chemistry, 191, 545–560.CrossRefGoogle Scholar
  15. Bruinsma, G. M., van der Mei, H. C., & Busscher, H. J. (2001). Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials, 22, 3217–3224.CrossRefGoogle Scholar
  16. Cai, K., Bossert, J., & Jandt, K. D. (2006). Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation? Colloids and surfaces B: Biointerfaces, 49, 136–144.CrossRefGoogle Scholar
  17. Coulthwaite, L., & Veran, J. (2011). Development of an in vitro denture plaque biofilm to model denture malodor. Journal of Breath Research, 2, 17–21.Google Scholar
  18. Crawford, R. J., Webb, H. K., Truong, V. K., Hasan, J., & Ivanova, E. P. (2012). Surface topographical factors influencing bacterial attachment. Advances in Colloid and Interface Science, 179, 142–149.CrossRefGoogle Scholar
  19. Dejong, P., Tegiffel, M. C., & Kiezebrink, E. A. (2002). Prediction of the adherence, growth and release of microorganisms in production chains. International Journal of Food Microbiology, 74, 13–25.CrossRefGoogle Scholar
  20. Deligianni, D. D., Katsala, N. D., Koutsoukos, P. G., & Missirlis, Y. F. (2001). Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment. Biomaterials, 22, 87–96.CrossRefGoogle Scholar
  21. Dickinson, R. B., & Cooper, S. L. (1995). Analysis of shear dependent bacterial adhesion kinetics to biomaterial surfaces. Bioengineering, Food, and Natural Products, 41, 2160–2174.Google Scholar
  22. Dufrene, Y. F. (2003). Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Current Opinion in Microbiology, 6, 317–323.CrossRefGoogle Scholar
  23. Eden, C. S., Eriksson, B., & Hanson, L. A. (1977). Adhesion of Escherichia coli to human uroepithelial cells in vitro. Infection and Immunity, 18, 767–774.Google Scholar
  24. Eick, S., Glockmann, E., Brandl, B. & Pfister, W. (2004). Adherence of Streptococcus mutans to various restoratives materials in a continous flow system. Journal of Oral Rehabilitation, 31, 278–285.Google Scholar
  25. Faeda, R. S., Tavares, H. S., Sartori, R., Guastaldi, A. C., & Marcantonio, J. R. (2009). Evaluation of titanium implants with surface modification by laser beam: Biomechanical study in rabbit tibias. Brazilian oral research, 23, 137–143.CrossRefGoogle Scholar
  26. Fleer, A., & Verhoef, J. (1986). Coagulase-negative staphylococci as nosocomial pathogens in neonates. American Journal of Medicine, 80, 161–165.CrossRefGoogle Scholar
  27. Fournier, R. L. (1999). Solute transport in biological systems. In Basic transport phenomena in biomedicale Engineering. Washington, DC: Taylor and Francis.Google Scholar
  28. Galasso, O., Mariconda. M., Calonego, G., & Gasparini, G. (2011). Physical pharmacological properties of coloured bone cement with and without antibiotics. Journal of Bone and Joint Surgery British, 93, 1529–1536.Google Scholar
  29. Galli, C., Coen, M. C., Hauert, R., Katanaevc, V. L., Gröning, P., & Schlapbach, L. (2002). Creation of nanostructures to study the topographical dependency of protein adsorption. Colloids and Surfaces B: Biointerfaces, 26, 255–267.CrossRefGoogle Scholar
  30. Gittens, R. A. (2011). The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 32, 3395–3403.CrossRefGoogle Scholar
  31. Han, M., Sethuraman, A., Kane, R.-S., & Belfort, G. (2003). Nanometer-scale roughness having little effect on the amount or structure of adsorbed protein. Langmuir, 19, 9868–9872.CrossRefGoogle Scholar
  32. Hannig, C., & Hannig, M. (2009). The oral cavity: A key system to understand substratum dependent bioadhesion on solid surfaces in man. Clinical Oral Investigations, 13, 123–139.CrossRefGoogle Scholar
  33. Haupt, M., Thommes, M., Heidenreich, A., & Breitkreutz, J. (2013). Lipid-based intravesical drug delivery systems with controlled release of trospium chloride for the urinary bladder. Journal of Controlled Release, 170, 161–166.CrossRefGoogle Scholar
  34. Ho-Nam, L., Seong-Hwan, K., Bin, Y., & Yong-Keun, L. (2009). Influence of HEMA content on the mechanical and bonding properties of experimental HEMA added glass ionomer cements. Journal of Applied Oral Science, 17, 340–349.Google Scholar
  35. Huang, Y., Zha, G., Luo, Q., Zhang, J., Zhang, F., Li, X., et al. (2014). The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability. Scientific Reports, 4, 1–10.Google Scholar
  36. Jansen, B., & Ellinghorst, G. (1984). Modification of polyetherurethane for biomedical application by radiation induced grafting. II. Water sorption, surface properties, and protein adsorption of grafted films. Journal of Biomedical Materials Research, 18, 655–669.CrossRefGoogle Scholar
  37. Jansen, B., Peters, G., & Pulverer, G. (1988a). Mechanisms and clinical relevance of bacterial adhesion to polymers. Journal of Biomaterials Applications, 2, 520–543.CrossRefGoogle Scholar
  38. Jansen, B., Peters, G., Schareina, S., Steinhauser, H., Schumacher-Perdreau, F., & Pulverer, G. (1988b). Development of polymers with anti infectious properties. Polymer Science and Technology, 38, 97–113.Google Scholar
  39. Jeon, O., Samorezov, J. E., & Alsberg, E. (2014). Single and dual crosslinked oxidized methacrylated alginat/PEG hydrogels for bioadhesive applications. Acta Biomaterialia, 10, 47–55.CrossRefGoogle Scholar
  40. Katsikogianni, M., & Missirlis, Y. F. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria material interactions. European Cells and Materials, 8, 37–57.Google Scholar
  41. Katsikogianni, M., Amanatides, E., Mataras, D. S., & Missirlis, Y. F. (2008). Colloids and surfaces. Biointerfaces, 65, 257–268.CrossRefGoogle Scholar
  42. Kawai, K., Urano, M., & Ebisu, S. (2000). Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans. Journal of Prosthetic Dentistry, 83, 664–667.CrossRefGoogle Scholar
  43. Kendall, K. (2004). Molecular adhesion and its applications. New York: Kluwer Academic Publishers.Google Scholar
  44. Kwok, D. Y., Lin, R., Mui, M., & Neumann, A. W. (1996). Colloids and surfaces: Physico-chemical and engineering aspect. Colloids and Surfaces, 116, 63–223.CrossRefGoogle Scholar
  45. Lee, S. J., & Park, K. (1994). Protein interaction with surfaces: Separation distance dependent interaction energies. Journal of Vacuum Science and Technology, 12, 2949–2955.CrossRefGoogle Scholar
  46. Lehr, C. M. (2000). Lectin-mediated drug delivery: The second generation of bioadhesives. Journal of Controlled Release, 65, 19–29.CrossRefGoogle Scholar
  47. Luk, F. (1989). Measurement of surface roughness by a machine vision system. Journal of Physics E: Scientific Instruments, 22, 977–981.CrossRefGoogle Scholar
  48. Meuller, C., Leuders, A., Hoth-Hannig, W., Hannig, M., & Ziegler, C. (2010). Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability, and isoelectric point. Langmuir, 26, 4136–4141.CrossRefGoogle Scholar
  49. Mikhail, S. S., Schricker, S. R., Azer, S. S., Brantley, W. A., & Johnston, W. M. (2013). Optical, mechanical and characteristics of contemporary dental composite resin materials. Journal of Dentistry, 41, 771–778.CrossRefGoogle Scholar
  50. Miörner, H., Myhre, E., Björck, L., & Kronvall, G. (1980). Effect of specific binding of human albumin, fibrinogen, and immunoglobulin G on surface characteristics of bacterial strains as revealed by partition experiments in polymer phase systems. Infection and Immunity, 29, 879–885.Google Scholar
  51. Mobley, S. R., Hilinski, J., & Toriumi, D. M. (2002). Surgical tissue adhesives. Facial Plastic Surgery Clinics of North America, 10, 147–154.CrossRefGoogle Scholar
  52. Muller, C., Luders, A., Wiebke, H., Hannig, M., & Ziegler, C. (2010). Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability, and isoelectric point. Langmuir, 26, 4136–4141.CrossRefGoogle Scholar
  53. Noh, Y., & Voghler, E. A. (2006). Volumetric interpretation of protein adsorption: Mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity. Biomaterials, 27, 5801–5812.CrossRefGoogle Scholar
  54. North, W. P. T., & Agarwal, A. K. (2009). Surface roughness measurement with fiber optics. Journal of Dynamic Systems, Measurement, and Control, 105, 295–297.CrossRefGoogle Scholar
  55. Palacio, M. L. B., & Bhushan, B. (2011). Bioadhesion: A review of concepts and applications. Philosophical Transactions of the Royal Society A, 370, 2321–2347.CrossRefGoogle Scholar
  56. Panda, A., Kumar, S., Kumar, A., Bansal, R., & Bhartiya, S. (2009). Fibrin glue in ophthalmology. Indian Journal of Ophthalmology, 57, 371–379.CrossRefGoogle Scholar
  57. Patterson, C. J., Mc lundie, A. C., Stirrups, D. R., & Taylor, W. G. (1992). Efficacy of a porcelain refinishing system in restoring surface finish after grinding with fine and extra fine diamond burs. Journal of Prosthetic Dentistry, 68, 402–406.Google Scholar
  58. Philip, A. K., & Oman, B. P. (2010). Colon targeted drug delivery system: A review on primary novel approaches. Medical Journal, 25, 79–87.Google Scholar
  59. Quirynen, M., van der Mei, H. C., & Bollen, C. M. L. (1993). An in vivo study of the influence of the surface roughness of implants on the microbiology of supra and subgingival plaque. Journal of Dental Research, 72, 304–1309.CrossRefGoogle Scholar
  60. Quirynen, M., & Bollen, C. M. L. (1995). The influence of surface roughness and surface-free energy on supra and subgingival plaque formation in man. A review of the literature. Journal of Clinical Periodontology, 22, 1–14.CrossRefGoogle Scholar
  61. Rashid, H. (2012). Comparing glazed and polished ceramic surfaces using confocal laser scanning microscopy. Journal of Advanced Microscopy Research, 7, 208–213.CrossRefGoogle Scholar
  62. Robichon, D., Girard, J. C., Cenatiempo, Y., & Cavallier, J. F. (1999). Atomic force microscopy imaging of dried or living bacteria. Comptes Rendus de I’ Academie des Sciences serie Paris Life Science, 322, 687–693.CrossRefGoogle Scholar
  63. Rutter, P. R., & Vincent, B. (1980). Microbial adhesion to surface (p. 79). Chichester: Ellis Horwood Ltd.Google Scholar
  64. Sabatini, L., Trecci, A., Imarisio, D., Uslenghi, M. D., Bianco, G., & Scagnelli, R. (2012). Fibrin tissueadhesive reduces postoperative blood loss in total knee arthroplasty. Journal of Orthopedics and Traumatology, 13, 145–151.CrossRefGoogle Scholar
  65. Shah, N. V., & Meislin, R. (2013). Current state and use of biological adhesives in orthopedic surgery. Orthopedics, 36, 945–956.CrossRefGoogle Scholar
  66. Siswomihardjo, W., Sunarintyas, S., & Tontowi, A. E. (2012). The effect of zirconia in hydroxyapatite on Staphylococcus epidermidis growth. International Journal of Biomaterials, 2012, 1–4.CrossRefGoogle Scholar
  67. Smart, J. D. (2014). Principle of bioadhesion. In H. Blanco-Peled & M. Davidovich-Pinhas (Eds.), Bioadhesion and biomimeticsfrom nature to applications (p. 3022). Boca Raton: CRC Press.Google Scholar
  68. Smithwich, R. W. (1988). Contact angle studies of microscopic mercury droplets on glass. Journal of Colloid and Interface Science, 123, 482–485.CrossRefGoogle Scholar
  69. Snoeijer, J. -H., & Andreotti, B. (2008). A microscopic view on contact angle selection. Physics of Fluids, 20, 571–581.CrossRefGoogle Scholar
  70. Sugarman, B., & Young, E. J. (1984). Infections associated with prosthetic devices (p. 61). Boca Raton: CRC Press.Google Scholar
  71. Sunarintyas, S., & Siswomihardjo, W. (2011). The effect of sericin application over hydroxyapatite surface on osteoblast cells proliferation. In Proceedings of the 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering in ITB, Bandung (pp. 145–149).Google Scholar
  72. Sunarintyas, S., Yustisia, Y., & Tontowi, A. E. (2011). The influence of sericin coated on hydroxyapatite toward osteoblast attachment. Journal Teknosains, 1, 35–41.Google Scholar
  73. Sutula, J., Coulthwaite, L., Thomas, L., & Verran, J. (2012). The effect of a commercial probiotic drink on oral microbiota in healthy complete denture wearers. Microbial Ecology in Health and Disease, 23, 18404–18410.Google Scholar
  74. Tanner, J., Carlén, A., Söderling, E., & Vallittu, P. (2003). Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 25175 to dental fiber-reinforced composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 66, 391–398.Google Scholar
  75. Tanner, J., Robinson, C., Söderling, E., & Vallittu, P. (2005). Early plaque formation on fibre-reinforced composites in vivo. Clinical Oral Investigations, 9, 154–160.CrossRefGoogle Scholar
  76. Temenoff, J. S., & Mikos, A. G. (2008). Biomaterials the intersection of biology and materials science (pp. 19–28). London: Pearson Education Ltd.Google Scholar
  77. Vaidyanathan, T. K., & Vaidyanathan, J. (2009). Recent advances in the theory and mechanism of adhesive resin bonding to dentin: A critical review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88, 558–578.CrossRefGoogle Scholar
  78. Vanburger, T. V., & Raja, J. (1990). Surface finish metrology tutorial (pp. 1–159). Washington: U.S. Department of Commerce.Google Scholar
  79. Watanabe, N., Shirakawa, T., Iwahashi, M., Ohbu, K., & Seimiya, T. (1986). Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry: Adsorption on atomic monolayer. Colloid and Polymer Science, 264, 903–910.CrossRefGoogle Scholar
  80. Woodley, J. (2001). Bioadhesion: New possibilities for drug administration. Clinical Pharmacokinetics, 40, 77–84.CrossRefGoogle Scholar
  81. Xu, L., Vadilli-Rodriguez, V., & Logan, B. E. (2005). Residence time, loading force, pH, and ionic strength affect adhesion forces between colloids and biopolymer coated surfaces. Langmuir, 21, 7491–7500.CrossRefGoogle Scholar
  82. Xu, L., & Siedlecki, C. A. (2007). Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 28, 3273–3283.CrossRefGoogle Scholar
  83. Yuan, Y., & Lee, T. R. (2013). Chapter 1: contact angle and wetting properties. In G. Bracco & B. Holst (Ed.), Surface Science techniques (pp. 1–30). Berlin: Springer.Google Scholar
  84. Yulianto, H. D. K., & Rinastiti, M. (2014). Contact angle measurement of dental restorative materials by drop profile image analysis. Journal of Teknosains, 3, 112–118.Google Scholar
  85. Yustisia, Y., Sunarintyas, S., & Susilowati, R. (2012). Immobilization of Bombyx Mori’s sericin on poly (l-lactic acid) films and its effect on surface hydrophilicity. In Proceeding of the 2nd International Joint Symposium on Oral and Dental Sciences (pp. 193–195).Google Scholar
  86. Zhu, Z., Zhai, Y., Zhang, N., Leng, D., & Ding, P. (2013). The development of polycarbophil as a bioadhesive material in pharmacy. Asian Journal of Pharmaceutical Sciences, 8, 218–227.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Gadjah Mada UniversityYogyakartaIndonesia

Personalised recommendations