Skip to main content

Biocompatibility Issues of Biomaterials

  • Chapter
  • First Online:
Biomaterials and Medical Devices

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 58))

Abstract

The history of biomaterials started with gold and ivory, when these materials were used by the Egyptians and Romans before the twentieth century. Biomaterial is defined as any non-vital materials used in medical devices, intended to interact with biological systems. An important property that differentiates a biomaterial from other material is its biocompatibility. It is a term that is referred to as the appropriate host response to biomaterials. The understanding of biocompatibility is becoming an interdisciplinary study, since the biocompatibility of biomaterials is a critical issue in limiting device longevity and functionality. Biocompatibility is a multifactorial property, and it can be illustrated as a dynamic and an ongoing process. Some materials, such as amalgam, acrylic resin, and bis-GMA have been used for years in dentistry. On the other hand controversies still arise to debate the biocompatibility of those materials.  Measuring the biocompatibility of a material is very complex. It is based on three levels of tests. Since there is no guarantee that a material is 100 % safe, all regulations and standards are related to the risk and safety of the materials. It is a challenge for biomaterials scientists to provide biomaterials with good biocompatibility that are able to serve for the best result of medical treatments. Gadjah Mada University as a leading university in Indonesia pays a great interest in the field of research. Some studies in developing local biomaterials and medical devices conducted by researchers of Gadjah Mada University are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ana, I. D., Matsuya, S., & Ishikawa, K. (2010). Engineering of carbonate apatite bone substitute based on composition-transformation of gypsum and calcium hydroxide. J Eng, 4, 344–352.

    Article  Google Scholar 

  • Anderson, J. M. (2001). Biological responses to materials. Annual Review of Materials Research, 31, 81–110.

    Article  Google Scholar 

  • Anusavice, K. J. (2003). Phillip’s science of dental materials (11th ed.) (pp. 170–190). Elsevier.

    Google Scholar 

  • Anusavice, K. J., Shen, C., & Rawls, H. R. (2013)1. ). Phillip’s science of dental materials (12th ed.) (pp. 170–190). Elsevier.

    Google Scholar 

  • Barralet, J., Akao, M., & Aoki, H. (2000). Dissolution of dense carbonate apatite subcutaneously implanted Wistar rats. Journal of Biomedical Materials Research, 49, 176.

    Article  Google Scholar 

  • Bergman, C. P., & Stumpf, A. (2013). Dental ceramics, topings in mining. Metallurgy and materials engineering. Heidelberg: Springer.

    Google Scholar 

  • Bhat, V., Sharma, S. M., Shetty, V., Shastry, C. S., Rao, V., Shenoy, S. M., et al. (2013). Prevalence of Candida-associated denture stomatitis (CADS) and specification of Candida among complete denture wearers of south west coastral region of Karnataka. NUJHS, 3, 59–63.

    Google Scholar 

  • Bhola, R., Bhola, S. M., Liang, H., & Mishra, B. (2010). Biocompatibility denture polymers—a review. Trends Biomater Artif Organs, 23, 129–136.

    Google Scholar 

  • Browne, R. M. (1988). The in vitro assessment of the cytotoxicity of dental materials—does it have a role? International Endodontic, 21, 50–58.

    Article  Google Scholar 

  • Browne, R. M. (1994). Animal tests for biocompatibility of dental materials relevance, advantages and limitations. Journal of Dentistry, 22, 21–24.

    Article  Google Scholar 

  • Chee, W., & Jivraj, S. (2007). Failures in implant dentistry. British Dental Journal, 202, 123–129.

    Article  Google Scholar 

  • Chintalwar, S, A., Rajkapoor, B., & Ghode, P. D. (2012). Cytotoxicity of methanolic extract of pisoniaaculeata leaf. International Journal of Pharmacy and Biological Sciences, 3, 155–160.

    Google Scholar 

  • Craig, R. G., & Powers, J. M. (2002). Restorative dental materials (11th ed.) (pp. 135–140). Mosby.

    Google Scholar 

  • Dandekeri, S., Sowmya, M. K., & Bhandary, S. (2012). A maxillofacial rehabilitation with velopharyngeal obturator prosthesis. IJBR, 3, 285–287.

    Google Scholar 

  • Dewo, P., Sharma, P. K., van der Tas, H. F., van der Houwen, E. B., Timmer, M., Magetsari, R., & Busscher, H. J. (2008a). Surface properties of Indonesian-made narrow dynamic compression plates. Medical Journal of Malaysia, 63, 21–23.

    Google Scholar 

  • Dewo, P., Magetsari, R., Busscher, H. J., van Horn, J. R., & Verkerke, G. J. (2008b). Treating natural disaster victims is dealing with shortages – an orthopaedics perspective. Technical Health Care, 16, 255–259.

    Google Scholar 

  • Dewo, P., Van Der Houwen, E. B., Sharma, P. K., Magetsari, R., Bor, T. C., Vargas Llona, L. D., Van Horn, J. R., Busscher, H. J., & Verkerke, G. J. (2012). Mechanical properties of Indonesian-made narrow dynamic compression plate. Journal of Mechanical Behavior of Biomedical Materials, 13, 93–101.

    Google Scholar 

  • Dewo, P., van der Houwen, E. B., Suyitno, Marius, R., Magetsari, R., & Verkerked, G. J. (2015). Redesign of Indonesian-made osteosynthesis plates to enhance their mechanical behavior. Journal of Mechanical Behavior of Biomedical Materials, 42, 274–281.

    Google Scholar 

  • Duplinsky, T. G., & Cicchetti, D. V. (2012). The health status of dentists exposed to mercury from silver amalgam tooth restorations. International Journal of Statistics in Medical Research, 1, 1–15.

    Google Scholar 

  • Frinsken, K. W., Dandie, G. W., Lugowski, S., & Jordan, G. (2002). A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Australian Dental Journal, 47, 214–217.

    Article  Google Scholar 

  • Garoushi, S., Lassila, L., & Vallittu, P. K. (2011). Resin-based fiber-reinforced composite for direct replacement of missing anterior teeth- A clinical report. International Journal of Dental, 8455420.

    Google Scholar 

  • Gautam, R., Singh, R. D., Sharma, V. P., Siddharta, R., Chand, P., & Kumar, R. (2012). Biocompatibility of polymethyl methacrylate resins used in dentistry. Journal of Biomedical Materials Research, 100, 1444–1450.

    Article  Google Scholar 

  • Gottenbos, B. (2001). The development of antimicrobial biomaterial surfaces. Thesis. pp. 10–13.

    Google Scholar 

  • Herliansyah, M. K., Hamdi, M., Ektessabi, A. I., & Wildan, M. W. (2006). Fabrication of hydroxy-apatite bone graft for implant applications—literature study. In Proceeding of First International Conference on manufacturing and material processing (pp. 559–564). Kuala Lumpur, Malaysia.

    Google Scholar 

  • Illeperuma, R. P., Park, Y. J., Kim, J. M., Bae, J. Y., Che, Z. M., Son, H. K., et al. (2012). Immortalized gingival fibrobalsts as a cytotoxicity test model for dental materials. Journal of Materials Science. Materials in Medicine, 23, 753–762.

    Article  Google Scholar 

  • Keong, L. C., & Hlim, A. S. (2009). In vitro models in biocompatibility assessment for biomedical grade chitosan derivatives in wound management. International Journal of Molecular Sciences, 10, 1300–1313.

    Article  Google Scholar 

  • Kirkpatrick, C. J., Peters, K., Hermanns, M. I., Bittinger, F., Krump-Konvalinkova, V., Fuchs, S., & Unger, R. E. (2005). In vitro methodologies to evaluate biocompatibility—status quo and perspective. ITBM RBM, 26, 192–199.

    Article  Google Scholar 

  • Kostoryz, E. L., Tong, P. Y., Chappelow, C. C., Eick, J. D., Glaros, A. G., & Yourtee, D. M. (1999). In vitro cytotoxicity of solid epoxy-based dental resins and their components. Ent Mat, 15, 363–373.

    Google Scholar 

  • Landi, E., Tampieri, A., Celotti, G., Langenati, R., Shandri, M., & Sprio, S. (2005). Influence of synthesis and sintering parameters on the characteristics of calcium phosphate. Biomaterials, 26, 2835–2839.

    Article  Google Scholar 

  • Lassila, L. V. J., & Vallittu, P. K. (2001). Denture base polymer alldentsinomer—mechanical properties, water sorption and release of residual compounds. Journal of Oral Rehabilitation, 28, 607–613.

    Article  Google Scholar 

  • Lawrence, W. H., Dillingham, E. O., Turner, J. E., & Austian, J. (1972). Toxicity profile of chloroacetaldehyde. Journal of Pharmaceutical Sciences, 61, 19–25.

    Article  Google Scholar 

  • Leggat, P. A., & Kedjarune, U. (2003). Toxicity of methyl methacrylate in dentistry. International Dental Journal, 53, 126–131.

    Article  Google Scholar 

  • Lugoswki, S., Smith, D. C., & Bonek, H. (2000). Systemic metal ion levels in dental implant patientsafter five years. ActualitesenBiomateriaux, Paris France. Romillat, 401–409.

    Google Scholar 

  • Lundin, K., Schmidt, G., & Bonde, C. (2013). Amalgam tattoo mimicking mucosal melanoma—a diagnostic dilemma revisited. Case Reports in Density, 787294.

    Google Scholar 

  • Magetsari, R., Van Der Houwen, E. B., Bakker, M. T. J., Van Dr Mei, H. C., Verkerke, G. J., Rakhorst, G., Hilmy, C. R., Van Horn, J. R., & Busscher, H. J. (2006). Biomechanical and surface physico-chemical analyses of used osteosynthesis plates and screws—potential for reuse in developing countries. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 70, 453–460.

    Google Scholar 

  • Malineni, S. K., Nuvvula, S., Matinlinna, J. P., Yiu, C. K., & King, N. M. (2013). Biocompatibility of various dental materials in contemporary dentistry—a narrative insight. The Journal of Clinical Dentistry, 4, 9–19.

    Google Scholar 

  • Mehta, R. (2015). Powder metallurgy processing for low-cost titanium. In Materials world magazine. http://www.iom3.org/news/powder-metallurgy-processing-low-cost-titanium.

  • Moharamzadeh, K., van Noort, R., Brook, I. M., & Scutt, A. M. (2007). Cytotoxicity of resin monomers on human gingival fibroblast and HaCaT keratinocytes. Dental Materials, 23, 40–44.

    Article  Google Scholar 

  • Murray, P. E., Godoy, C. G., & Godoy, F. G. (2007). How is the biocompatibility of dental materials evaluated? Medicina Oral, Patología Oral y Cirugía Bucal, 12, 258–256.

    Google Scholar 

  • Mutter, J. (2011). Is dental amalgam safe for humans? The opinion of the scientific committee of the European commission. Journal of Occupational Medicine, 6, 8–17.

    Article  Google Scholar 

  • Nalcaci, A., Oxcan, M. D., & Yilmaz, S. (2006). Citotoxicity of composite resins polymerized with different curing methods. International Endodontic Journal, 37, 151–156.

    Article  Google Scholar 

  • Nayak, Y., Rana, R. P., & Pratihar, S. K. (2008). Pressureless sintering of dense hydro-xyapatite- zirconia composites. Journal of Material Science, 19, 2437–2444.

    Google Scholar 

  • Noor, A. F. M., Kasim, S. R., Othman, R., Ana, I. D., & Ishikawa, K. (2013). Synthesis of biphasic calcium phosphate by hydrothermal route and conversion to porous sintered scaffold. JBNB, 4, 273–278.

    Google Scholar 

  • Onuki, Y., & Bhardwajd, U. (2008). A review of the biocompatibility of implantable devices—current challenges to overcome foreign body response. Journal of Diabetes Science and Technology, 2, 1003–1010.

    Google Scholar 

  • Ozcan, M., & Hammerle, C. (2012). Titanium as a reconstruction and implant material in dentistry- Advantages and pitfalls. Materials, 5, 1528–1545.

    Article  Google Scholar 

  • Ozen, J., Sipahi, C., Caglar, A., & Dalkiz, M. (2006). In vitro cytotoxicity of glass and carbon fiber-reinforced heat-polymerized acrylic resin denture base material. Turkish Journal of Medical Sciences, 36, 121–126.

    Google Scholar 

  • Phillips, R. W. (1989). Skinner’s Science of Dental Materials (8th ed.). Philadelphia: WB Saunders Co.

    Google Scholar 

  • Pleva, J. (1994). Dental mercury– A public health hazard. Reviews on Environmental Health, 10, 1–27.

    Article  Google Scholar 

  • Pradeep, N., & Sreekumar, V. (2012). An in vitro investigation into the cytotoxicity of methyl methacrylate monomer. Journal of Contemporary Dental Practice, 6, 838–841.

    Article  Google Scholar 

  • Pujiyanto, E., Siswomihardjo, W., Ana, I. D., Tontowi, A. E., & Wildan, M. W. (2006). Cytotoxicity of hydroxyapatite synthesized from local gypsum. In BME days proceeding (pp. 92–95). Bandung.

    Google Scholar 

  • Pujiyanto, E., Tontowi, A. E., Wildan, M. W., & Siswomihardjo, W. (2013). Preparation of porous hydroxyapatite as synthetic scaffold using powder deposition and sintering and cytotoxicity evaluation. Advanced Materials Research, 747, 123–126.

    Article  Google Scholar 

  • Quan, R., Yang, D., Wu, X., Wang, H., Miao, X., & Li, W. (2008). In vitro and in vivo biocompatibility of graded hydroxyapatite – zirconia composite bioceramic. Journal Materials Science, 19, 183–187.

    Google Scholar 

  • Ratner, B.D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science—an introduction to materials in medicine. Elsevier.

    Google Scholar 

  • Sakaguchi, R. L., & Powers, J. M. (2012). Craig’s restorative dental materials (13th ed.) (pp. 110–128). Elsevier.

    Google Scholar 

  • Salerno, C., Pascale, M., Contaldo, M., Esposito, V., Busciolano, M., Milillo, L., Guida, A., Petruzzi, M., & Serpico, R. (2011). Candida associated denture stomatitis. Med Oral Patol Oral Cir Bucal Mar, 16, 139–143.

    Google Scholar 

  • Schmalz, G., & Arenholt-Bindslev, D. (2009). Biocompatibility of dental materials. Heidelberg: Springer.

    Google Scholar 

  • Scott, R. M. (1990). Preventing and treating shunt complications. Concepts Neurosurg, 3, 115–121.

    Google Scholar 

  • Sideridou, I., Achilias, D. S., Spyroudi, C., & Karabela, M. (2004). Water sorption characteristics of light-cured dental resins and composites based on Bis-EMA/PCDMA. Journal of Biomaterials, 25, 367–376.

    Article  Google Scholar 

  • Simon, C. G., Antonuci, J. M., Liu, D. W., & Skrtic, D. (2005). In vitro cytotoxicity of amorphous calcium phosphate composites. Journal of Bioactive and Compatible Polymers, 20, 279–295.

    Article  Google Scholar 

  • Singh, R., & Dahotre, N. B. (2007). Corrosion degradation prevention by surface modification of biometallic materials. Journal of Materials Science. Materials in Medicine, 18, 725–751.

    Article  Google Scholar 

  • Siswomihardjo, W., Sunarintyas, S., & Tontowi, A. E. (2012). The effect of zirconia in hydroxyapatite on Staphylococcus epidermidis growth. International Journal of Biomaterials, 432372.

    Google Scholar 

  • Soni, R., Bhatnagar, A., Vivek, R., Singh, R., Chaturvedi, T. P., & Singh, A. (2012). A systemic review on mercury toxicity from dental amalgam fillings and its management strategies. Journal of Scientometric Research, 56, 81–92.

    Google Scholar 

  • Sudiharto, P. (2002). Ventriculoperitoneal shunt using new semilunar valve system for hydrocephalus in infants and children. Indonesia Journal of Clinical Epidemiology and Biostatistics, 9, 56–65.

    Google Scholar 

  • Sweeney, M., Creanor, S. L., Smith, R. A., & Foye, R. H. (2012). The release of mercury from dental amalgam and potential neurotoxicological effects. Journal of Dentistry, 30, 243–250.

    Article  Google Scholar 

  • Tang, A. T. H. (2014). Biocompatibility in Handbook of oral biomaterials (pp. 173–176). Pan Stanford Pub.

    Google Scholar 

  • Temenoff, J. S., & Mikos, A. G. (2008). Biomaterials—the intersection of biology and materials science (pp. 1–13). Pearson Int Ed.

    Google Scholar 

  • Triyono, J., Tontowi, A. E., Siswomihardjo, W., & Rochmadi. (2015). Tensile strength test of photo biocomposites for application in biomedical materials. Applied Mechanics and Materials, 699, 411–415.

    Google Scholar 

  • Tuan Rahmi, T. N. A., Mohamad, D., Akil, H. M., & Abdul Rahman, I. (2012). Water sorption characteristics of restorative dental composites immersed in acidic drinks. Dental Materials, 28, 63–70.

    Google Scholar 

  • Ucar, Y., & Brantley, W. (2011). Biocompatibility of dental amalgams. International Journal of Dentistry, 981595.

    Google Scholar 

  • van den Berghe, F., Cornillie, P., Stegen, L., van Goethem, B., & Simoens, P. (2010). Palatoschizis in the dog—development mechanisms and etiology. Vlaams Diergeneeskunde Tijdschrift, 79, 117–123.

    Google Scholar 

  • van Tienhoven, E. A. E., Korbee, D., Sshipper, L., Verharen, H. W., & de Jong, W.-H. (2006). In vitro and in vivo (cyto)toxicity assays using PVC and LDPE as model materials. Journal of Biomedical Materials Research Part A, 78, 175–182.

    Article  Google Scholar 

  • Wang, Q., Ge, S., & Zhang, D. (2004). Highly bioactive nano-hydroxyapatite partially stabilized zirconia ceramics. Journal of Bionic Engineering, 1, 215–220.

    Google Scholar 

  • Wataha, J. C. (2001). Principles of biocompatibility for dental practioners. Journal of Prosthetic Dentistry, 86, 203–209.

    Article  Google Scholar 

  • Wataha, J. C., Hanks, C. T., Strawn, S., & Fat, G. C. (1994). Cytotoxicity of components of resins and other dental restorative materials. Journal of Oral Pathology, 10, 101–112.

    Google Scholar 

  • Wiliams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29, 2941–2953.

    Article  Google Scholar 

  • Woodman, J. L., Jacobs, J. J., Galante, J. O., & Urban, R. M. (1984). Metal ion release from titanium based prosthetic segmental replacements of long bones in baboons—A long term study. Journal of Orthopaedic Research, 1, 421–430.

    Article  Google Scholar 

  • Zhang, M., & Matinlinna, J. P. (2012). E-glass fiber-reinforced composites in dental applications. Silicon, 4, 73–78.

    Article  Google Scholar 

Download references

Acknowledgement

My special thanks goes to my colleagues P. Sudiharto, H. Dedy Kusuma, B. Primario Wicaksono, MG. Widiastuti, Punto Dewo, Ika Dewi Ana, H. Agung Pribadi, Purnomo and Y. Novian Paramarthanto who supported me with pictures, references, suggestions and fruitful discussions in completing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Widowati Siswomihardjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siswomihardjo, W. (2016). Biocompatibility Issues of Biomaterials. In: Mahyudin, F., Hermawan, H. (eds) Biomaterials and Medical Devices. Advanced Structured Materials, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-14845-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14845-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14844-1

  • Online ISBN: 978-3-319-14845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics