Naturally Derived Biomaterials and Its Processing

  • Raden Dadan RamdanEmail author
  • Bambang Sunendar
  • Hendra HermawanEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 58)


The rich Indonesian biodiversity has been viewed as an infinite resource of naturally inspired and derived biomaterials. The utilization of these natural materials for biomaterial applications necessitates additional steps to the currently established conventional synthesis methods. Some of these steps have been successfully developed at a lab scale with suitable controlling parameters resulting into an optimum overall synthesis processes. Further optimization and fine tuning on the parameters are required to translate the innovation into a commercialization. More efforts from biomaterial researchers and a supportive policy from the Government are essentially needed to foster the development of biomaterial and its applied technology resulting into low-cost yet effective medical devices to support the national health care program. This chapter concentrates its discussion on selected naturally derived biomaterials, their sources and their processing which have been developed in Indonesia. These include synthesis of hydroxyapatite from coral, land snail and egg shells via precipitation reaction, sol-gel, hydrothermal and biomimetic methods, new synthesis of membrane and encapsulation using template derived from a flower plant, and synthesis of zirconia for dental restoration.


Biomaterials Biomimetic Coral Natural Precipitation Sol-gel 



The authors acknowledge the support from the Indonesian Ministry of Research, Technology and Higher Education (RDR, BS) and the CHU de Québec Research Center (HH).


  1. Anitha, A., Sowmya, S., Kumar, P. T. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., et al. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39, 1644–1667.CrossRefGoogle Scholar
  2. Awang-Hazmi, A. J., Zuki, A. B. C. Z., Noordim, M. M., Jalila, A., & Norimah, Y. (2007). Mineral composition of the cockle (Anadara Granosa) shells of west coast of peninsular Malaysia and its potential as biomaterial for use in bone repair. Journal of Animal and Veterinary Advances, 6, 591–594.Google Scholar
  3. Balázsi, C., Wéber, F., Kövér, Z., Horváth, E., & Németh, C. (2007). Preparation of calcium-phosphate bioceramics from natural resources. Journal of the European Ceramic Society, 27, 1601–1606.CrossRefGoogle Scholar
  4. Ben-Nissan, B. (2003). Natural bioceramics: From coral to bone and beyond. Current Opinion in Solid State and Materials Science, 7, 283–288.CrossRefGoogle Scholar
  5. Capece, M., & Dave, R. (2011). Application of fluidized bed film coating for membrane encapsulation of catalysts. Powder Technology, 211, 199–206.CrossRefGoogle Scholar
  6. Chou, J., Ben-Nissan, B., Choi, A. H., Wuhrer, R., & Green, D. (2007). Conversion of coral sand to calcium phosphate for biomedical applications. Journal of the Australian Ceramic Society, 43, 44–48.Google Scholar
  7. Damien, E., & Revell, P. A. (2004). Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. Journal of Applied Biomaterials & Biomechanics, 2, 65–73.Google Scholar
  8. Fernandez, A., Torres, G. S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23, 1427–1432.CrossRefGoogle Scholar
  9. Fratzl, P. (2007). Biomimetic materials research: what can we really learn from nature's structural materials? Journal of the Royal Society Interface, 4, 637–642.Google Scholar
  10. Freire, M. N., & Holanda, J. N. F. (2000). Characterization of Avian Eggshell Waste Aiming its Use in a Ceramic Wall Tile Paste. Brasil: Universidade Estadual do Norte Fluminense, Av. Alberto Lamego.Google Scholar
  11. Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N. & Dumoulin, E. 2006. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75, 27–35.Google Scholar
  12. Gaona, M., Lima, R. S., & Marple, B. R. (2007). Nanostructured titania/hydroxyapatite composite coatings deposited by high velocity oxy-fuel (HVOF) spraying. Materials Science and Engineering A, 458, 141–149.CrossRefGoogle Scholar
  13. Gerhardt, L. C., Lottenbach, R., Rossi, R. M., & Derler, S. (2013). Tribological investigation of a functional medical textile with lubricating drug-delivery finishing. Colloids and Surfaces B: Biointerfaces, 108, 103–109.CrossRefGoogle Scholar
  14. Ghosh, S. K., Roy, S. K., Kundu, B., Datta, S., & Basu, D. (2011). Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Materials Science and Engineering B, 176, 14–21.CrossRefGoogle Scholar
  15. Guillenium, G., Patat, J., Fournie, J., & Chetail, M. (1987). The use of coral as a bone graft substitute. Journal of Biomedical Materials Research, 21, 557–567.CrossRefGoogle Scholar
  16. Hayakawa, S., & Osaka, A. (2000). Biomimetic deposition of calcium phosphates on oxides soaked in a simulated body fluid. Journal of Non-Crystalline Solids, 263–264, 409–415.CrossRefGoogle Scholar
  17. Hench, L. L. (1991). Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 74, 1487–1510.CrossRefGoogle Scholar
  18. Ige, O. O., Umoru, L. E., & Aribo, S. (2012). Natural products: A minefield of biomaterials. ISRN Materials Science, 2012, 983062.CrossRefGoogle Scholar
  19. Jackson, L. S., & Lee, K. (1991). Microencapsulation and encapsulated ingredients. Lebensmittel Wissenschaft und Technologie, 24, 289–297.Google Scholar
  20. Kang, E.-T. & Kim, J.-P. 2013. Conversion from a bio-inert glass to a glass with bio-active layer by heat-treatment in an oxidation atmosphere. Physics Procedia, 48, 46–54.Google Scholar
  21. Kel, D., Gökçe, H., Bilgiç, D., Ağaoğullari, D., Duman, I., Öveçoğlu, M. L., et al. (2012). Production of natural bioceramic from land snails. Key Engineering Materials, 493, 287–292.Google Scholar
  22. Khalid, M., Mujahid, M., Amin, S., Rawat, R. S., Nusair, A., & Deen, G. R. (2013). Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceramics International, 39, 39–50.CrossRefGoogle Scholar
  23. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (2004). Solution able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Journal of Biomedical Materials Research, 24, 721–734.CrossRefGoogle Scholar
  24. Labay, C., Canal, J. M., Navarro, A., & Canal, C. (2014). Corona plasma modification of polyamide 66 for the design of textile delivery systems for cosmetic therapy. Applied Surface Science, 316, 251–258.CrossRefGoogle Scholar
  25. Lima, R. S., Khor, K. A., Li, H., Cheang, P., & Marple, B. R. (2005). HVOF spraying of nanostructured hydroxyapatite for biomedical applications. Materials Science and Engineering A, 396, 181–187.CrossRefGoogle Scholar
  26. Louisia, S., Stromboni, M., Meunier, A., Sedel, L., & Petite, H. J. (1999). Coral grafting supplemented with bone marrow. Journal of Bone & Joint Surgery (British Volume), 81, 719–724.CrossRefGoogle Scholar
  27. Lu, C.-F., Huang, H.-S., Chu, C.-H., Li, W.-L., & Hong, T.-F. (2012). The effects of heat treatment atmosphere on the bone-like apatite inducement on the alkali treated Ti-6Al-4V. Surfaces Procedia Engineering, 36, 179–185.CrossRefGoogle Scholar
  28. Martin, A., Tabary, N., Leclercq, L., Junthip, J., Degoutin, S., Aubert, V. F., et al. (2013). Multilayered textile coating based on a β-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohydrate Polymers, 93, 718–730.CrossRefGoogle Scholar
  29. Martinez, C. J., Kim, J. W., Ye, C., Ortiz, I., Rowat, A. C., Marquez, M., & Weitz, D. (2012). A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromolecular Bioscience, 12, 946–951.CrossRefGoogle Scholar
  30. Miyazaki, T., Kim, H.-M., Kokubo, T., Ohtsuki, C., Kato, H., & Nakamura, T. (2002). Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials, 23, 827–832.CrossRefGoogle Scholar
  31. Ramdan, R. D., Prawara, B., Suratman, R., Pradana, R. A., & Rinaldi, A. (2014). Development of HVOF coating of hydroxy apatite on titanium alloy with carbon nano tube intermediate layer. Applied Mechanics and Materials, 660, 937–941.CrossRefGoogle Scholar
  32. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials Science: An Introduction to Materials in Medicine. San Diego: Elsevier.Google Scholar
  33. Río, G.-D., Sanchez, P., Morandoa, P., & Cicerone, D. S. (2006). Retention of Cd, Zn and Co on hydroxyapatite filters. Chemosphere, 64, 1015–1020.CrossRefGoogle Scholar
  34. Rodríguez-Navarro, A. B., Cabraldemelo, C., Batista, N., Morimoto, N., Alvarez-Lloret, P., Ortega-Huertas, M., et al. (2006). Microstructure and crystallographic-texture of giant barnacle (Austromegabalanus psittacus) shell. Journal of Structural Biology, 156, 355–362.CrossRefGoogle Scholar
  35. Sivakumar, M., Kumar, T. S., Shantha, K. L., & Rao, K. P. (1996). Development of hydroxyapatite derived from Indian coral. Biomaterials, 17, 1709–1714.CrossRefGoogle Scholar
  36. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62–69.CrossRefGoogle Scholar
  37. Sun, R., Li, M., Lu, Y., & Wang, A. (2006). Immersion behavior of hydroxyapatite (HA) powders before and after sintering. Materials Characterization, 56, 250–254.CrossRefGoogle Scholar
  38. Suzina, A. H., Samsudin, A. R., Salim, R. & Omar, N. S. 2005. Coral as bone substitute. In: Nather, A. (ed.) Bone Grafts and Bone Substitutes: Basic Science and Clinical Applications. London: World Scientific Publishing.Google Scholar
  39. Szafran, R. G., Ludwig, W., & Kmiec, A. (2012). New spout-fluid bed apparatus for electrostatic coating of fine particles and encapsulation. Powder Technology, 225, 52–57.CrossRefGoogle Scholar
  40. von Recum, A. F., & Laberge, M. (1995). Educational goals for biomaterials science and engineering: Prospective view. Journal of Applied Biomaterials, 6, 137–144.CrossRefGoogle Scholar
  41. Xu, Y., Wang, D., Yang, L., & Tang, H. (2001). Hydrothermal conversion of coral into hydroxyapatite. Materials Characterization, 47, 83–87.CrossRefGoogle Scholar
  42. Yang, S.-J., Wu, J.-J., Wang, Y.-C., Huang, C.-H., Wu, T.-M., Shieh, C.-J., & Chang, C. M. J. (2014). Encapsulation of propolis flavonoids in a water soluble polymer using pressurized carbon dioxide anti-solvent crystallization. The Journal of Supercritical Fluids, 94, 138–146.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Technology of BandungBandungIndonesia
  2. 2.CHU de Quebec Research CenterLaval UniversityQuebec CityCanada

Personalised recommendations