Hot Deformation of Heat-Resistant Steels

  • Wei YanEmail author
  • Wei Wang
  • Yiyin Shan
  • Ke Yang
  • Wei Sha
Part of the Engineering Materials book series (ENG.MAT.)


The full recrystallisation temperature and the carbon-free bainite phase transformation temperature are determined by the slope-change points in the curve of mean flow stress versus the inverse of temperature. Constitutive equations including the stress exponent and an activation energy term are applied to analyse the hot deformation behaviour of nitride-strengthened 9Cr-Nb-V martensitic heat-resistant steels. There exist two different linear relationships between critical stress and critical strain due to the augmentation of auxiliary softening effect of the dynamic strain-induced transformation (DSIT). The stress–strain curves up to the peak are divided into four regions, in sequence, representing four processes, namely hardening, dynamic recovery, DSIT and dynamic recrystallisation. The microstructures under different deformation conditions are analysed. The lower carbon content in steel would increase the fraction of precipitates by increasing the volume of DSIT ferrite during deformation. In the calculation of processing maps, with the change of Zener-Hollomon value, there are three domains of different levels of workability, namely excellent workability region with equiaxed-grain microstructure, good workability region with ‘stripe’ microstructure and poor workability region with martensitic-ferritic blend microstructure.


Flow Stress Deformation Temperature Stack Fault Energy Deformation Condition Critical Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beladi H, Kelly GL, Shokouhi A, Hodgson PD (2004) The evolution of ultrafine ferrite formation through dynamic strain-induced transformation. Mater Sci Eng A 371:343–352. doi: 10.1016/j.msea.2003.12.024 CrossRefGoogle Scholar
  2. Dong H, Sun XJ (2005) Deformation induced ferrite transformation in low carbon steels. Curr Opin Solid St M 9:269–276. doi: 10.1016/j.cossms.2006.02.014 CrossRefGoogle Scholar
  3. Fernández AI, Uranga P, López B, Rodriguez-Ibabe JM (2003) Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels. Mater Sci Eng A 361:367–376. doi: 10.1016/S0921-5093(03)00562-8 CrossRefGoogle Scholar
  4. Gustafson Å, Hättestrand M (2002) Coarsening of precipitates in an advanced creep resistant 9 % chromium steel—quantitative microscopy and simulations. Mater Sci Eng A 333:279–286. doi: 10.1016/S0921-5093(01)01874-3 CrossRefGoogle Scholar
  5. Hong SC, Lee KS (2002) Influence of deformation induced ferrite transformation on grain refinement of dual phase steel. Mater Sci Eng A 323:148–159. doi: 10.1016/S0921-5093(01)01359-4 CrossRefGoogle Scholar
  6. Hong SC, Lim SH, Hong HS, Lee KJ, Shin DH, Lee KS (2003) Effects of Nb on strain induced ferrite transformation in C-Mn steel. Mater Sci Eng A 355:241–248. doi: 10.1016/S0921-5093(03)00071-6 CrossRefGoogle Scholar
  7. Marchattiwar A, Sarkar A, Chakravartty JK, Kashyap BP (2013) Dynamic recrystallization during hot deformation of 304 austenitic stainless steel. J Mater Eng Perform 22:2168–2175. doi: 10.1007/s11665-013-0496-0 Google Scholar
  8. McQueen HJ, Ryan ND (2002) Constitutive analysis in hot working. Mater Sci Eng A 322:43–63. doi: 10.1016/S0921-5093(01)01117-0 CrossRefGoogle Scholar
  9. Momeni A, Dehghani K (2011) Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater Sci Eng A 528:1448–1454. doi: 10.1016/j.msea.2010.11.020 CrossRefGoogle Scholar
  10. Taylor AS, Hodgson PD (2011) Dynamic behaviour of 304 stainless steel during high Z deformation. Mater Sci Eng A 528:3310–3320. doi: 10.1016/j.msea.2010.12.093 CrossRefGoogle Scholar
  11. Uranga P, Fernández AI, López B, Rodriguez-Ibabe JM (2003) Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite. Mater Sci Eng A 345:319–327. doi: 10.1016/S0921-5093(02)00510-5 CrossRefGoogle Scholar
  12. von Hagen I, Bendick W (2001) Creep resistant ferritic steels for power plants. In: Proceedings of the international symposium on niobium, pp 753–776Google Scholar
  13. Zhang W, Liu Y, Li HZ, Li Z, Wang HJ, Liu B (2009) Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy. J Mater Process Technol 209:5363–5370. doi: 10.1016/j.jmatprotec.2009.04.006 CrossRefGoogle Scholar
  14. Zhang WF, Hu P, Zhou QG, Yan W, Shan YY, Yang K (2011) Effect of heat treatment on the mechanical properties and the carbide characteristics of a high strength low alloy steel. J Iron Steel Res Int 18(Supplement 1–1):143–147Google Scholar
  15. Zhang W, Yan W, Sha W, Wang W, Zhou Q, Shan Y, Yang K (2012) The impact toughness of a nitride-strengthened martensitic heat resistant steel. Sci China Technol Sci 55:1858–1862. doi: 10.1007/s11431-012-4903-9 CrossRefGoogle Scholar
  16. Zhang W-F, Li X-L, Sha W, Yan W, Wang W, Shan Y-Y, Yang K (2014a) Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel. Mater Sci Eng A 590:199–208. doi: 10.1016/j.msea.2013.10.020
  17. Zhang WF, Sha W, Yan W, Wang W, Shan YY, Yang K (2014b) Analysis of deformation behavior and workability of advanced 9Cr-Nb-V ferritic heat resistant steels. Mater Sci Eng A 604:207–214. doi: 10.1016/j.msea.2014.02.050 CrossRefGoogle Scholar
  18. Zhang W-F, Sha W, Yan W, Wang W, Shan Y-Y, Yang K (2014c) Constitutive modeling, microstructure evolution, and processing map for a nitride-strengthened heat-resistant steel. J Mater Eng Perform 23:3042–3050. doi: 10.1007/s11665-014-1026-4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Yan
    • 1
    Email author
  • Wei Wang
    • 1
  • Yiyin Shan
    • 1
  • Ke Yang
    • 1
  • Wei Sha
    • 2
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations