Creep of Heat-Resistant Steels

  • Wei YanEmail author
  • Wei Wang
  • Yiyin Shan
  • Ke Yang
  • Wei Sha
Part of the Engineering Materials book series (ENG.MAT.)


The first part of this chapter addresses the overestimation of the time–temperature parameter method on the allowable creep strength of 9–12 %Cr heat-resistant steels. Creep data of 9 %Cr heat-resistant steels are divided into several ranges according to the creep controlling mechanism. The physically based continuum creep damage mechanics could provide a unified framework for predicting the creep life of steels working at elevated temperature. It is used to analyse the creep rupture properties of a heat-resistant steel used in the supercritical power generation, based on the current experimental database. In the microstructure after creep, the martensitic laths grow in size with time and eventually develop into a subgrain structure. Laves phase grows and collects along the prior austenite grain boundaries during creep and causes the fluctuation of solution and precipitation strengthening effects. The deformed part of the creep specimen has lower hardness than the aged part because stress can accelerate the microstructure evolution. In the final part of the chapter, the creep rupture mechanism of heat-resistant steel under different stress levels is discussed. Under conditions of high stress, the creep rupture mechanism is similar to the ductile fracture at room temperature. This changes to brittle fracture under low stress levels.


Stress Exponent Lave Phase 10Cr Steel Minimum Creep Rate Rupture Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe F (2001) Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater Sci Eng A 319–321:770–773. doi: 10.1016/S0921-5093(00)02002-5 CrossRefGoogle Scholar
  2. Armaki HG, Maruyama K, Yoshizawa M, Igarashi M (2008) Prevention of the overestimation of long-term creep rupture life by multiregion analysis in strength enhanced high Cr ferritic steels. Mater Sci Eng A 490:66–71. doi: 10.1016/j.msea.2008.01.072 CrossRefGoogle Scholar
  3. Armaki HG, Chen R, Kano S, Maruyama K, Hasegawa Y, Igarashi M (2011) Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement. J Nucl Mater 416:273–279. doi: 10.1016/j.jnucmat.2011.06.007 CrossRefGoogle Scholar
  4. Chen Y, Yan W, Hu P, Shan Y, Yang K (2010) Modeling of creep curve of T91 heat resistant steel by CDM. In: International conference on advanced steels, Guilin, ChinaGoogle Scholar
  5. Chen YX, Yan W, Wang W, Shan YY, Yang K (2012a) Constitutive equations of the minimum creep rate for 9 %Cr heat resistant steels. Mater Sci Eng A 534:649–653. doi: 10.1016/j.msea.2011.12.022 CrossRefGoogle Scholar
  6. Chen Y, Yang K, Shan Y (2012b) Forecast method for creep-rupture property of ferritic heat resistant steel used for ultra super-critical thermal power generating units. Guangdong Electr Power 25(4):5–8Google Scholar
  7. Chen Y, Zhao L, Yan W, Wang W, Shan Y, Yang K (2014) High temperature creep rupture of T23 steel used for ultra-supercritical power plant. Iron Steel 49(2):55–59Google Scholar
  8. Dimmler G, Weinert P, Cerjak H (2008) Extrapolation of short-term creep rupture data—the potential risk of over-estimation. Int J Press Vessels Pip 85:55–62. doi: 10.1016/j.ijpvp.2007.06.003 CrossRefGoogle Scholar
  9. Dyson B (2000) Use of CDM in materials modeling and component creep life prediction. J Press Vessel Technol 122:281–296. doi: 10.1115/1.556185 CrossRefGoogle Scholar
  10. Hald J (2008) Microstructure and long-term creep properties of 9–12 %Cr steels. Int J Press Vessels Pip 85:30–37. doi: 10.1016/j.ijpvp.2007.06.010 CrossRefGoogle Scholar
  11. Hasegawa T, Abe YR, Tomita Y, Maruyama N, Sugiyama M (2001) Microstructural evolution during creep test in 9Cr–2W–V–Ta steels and 9Cr–1Mo–V–Nb steels. ISIJ Int 41:922–929. doi: 10.2355/isijinternational.41.922 CrossRefGoogle Scholar
  12. Helis L, Toda Y, Hara T, Miyazaki H, Abe F (2009) Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Mater Sci Eng A 510–511:88–94. doi: 10.1016/j.msea.2008.04.131 CrossRefGoogle Scholar
  13. Hu P, Yan W, Sha W, Wang W, Guo Z, Shan Y, Yang K (2009) Study on Laves phase in an advanced heat-resistant steel. Front Mater Sci Chin 3:434–441. doi: 10.1007/s11706-009-0063-7 CrossRefGoogle Scholar
  14. Hu P, Yan W, Sha W, Wang W, Shan Y, Yang K (2011) Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep. J Mater Sci Technol 27:344–351. doi: 10.1016/S1005-0302(11)60072-8 CrossRefGoogle Scholar
  15. Hyde TH, Becker AA, Sun W, Williams JA (2006) Finite-element creep damage analyses of P91 pipes. Int J Press Vessels Pip 83:853–863. doi: 10.1016/j.ijpvp.2006.08.013 CrossRefGoogle Scholar
  16. Kimura K, Kushima H, Sawada K (2009) Long-term creep deformation property of modified 9Cr–1Mo steel. Mater Sci Eng A 510–511:58–63. doi: 10.1016/j.msea.2008.04.095 CrossRefGoogle Scholar
  17. Kloc L, Skienička V, Ventruba J (2001) Comparison of low stress creep properties of ferritic and austenitic creep resistant steels. Mater Sci Eng A 319–321:774–778. doi: 10.1016/S0921-5093(01)00943-1 CrossRefGoogle Scholar
  18. Lee JS, Ghassemi-Armaki H, Maruyama K, Muraki T, Asahi H (2006) Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–VNb steel. Mater Sci Eng A 428:270–275. doi: 10.1016/j.msea.2006.05.010 CrossRefGoogle Scholar
  19. Li Q (2006) Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr-2W steel. Metall Mater Trans A 37A:89–97. doi: 10.1007/s11661-006-0155-2 CrossRefGoogle Scholar
  20. Maruyama K, Sawada K, Koike J (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi: 10.2355/isijinternational.41.641 CrossRefGoogle Scholar
  21. Nabarro FRN (2002) Creep at very low rates. Metall Mater Trans A 33A:213–218. doi: 10.1007/s11661-002-0083-8 CrossRefGoogle Scholar
  22. Park KS, Masuyama F, Endo T (2001) Creep modeling for life evaluation of heat-resistant steel with a martensitic structure. ISIJ Int 41:S86–S90. doi: 10.2355/isijinternational.41.Suppl_S86 CrossRefGoogle Scholar
  23. Peng ZF, Dang YY, Peng F (2010) Study on creep-rupture property assessment method for 9 %-12 %Cr ferritic heat-resistant steels. Acta Metall Sin 46:435–443. doi: 10.3724/SP.J.1037.2009.00652 CrossRefGoogle Scholar
  24. Pétry C, Lindet G (2009) Modelling creep behaviour and failure of 9Cr–0.5Mo–1.8W–VNb steel. Int J Press Vessels Pip 86:486–494. doi: 10.1016/j.ijpvp.2009.03.006 CrossRefGoogle Scholar
  25. Sawada K, Kubo K, Abe F (2001) Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater Sci Eng A 319–321:784–787. doi: 10.1016/S0921-5093(01)00973-X CrossRefGoogle Scholar
  26. Thomas Paul V, Saroja S, Vijayalakshmi M (2008) Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures. J Nucl Mater 378:273–281. doi: 10.1016/j.jnucmat.2008.06.033 CrossRefGoogle Scholar
  27. Whittaker MT, Wilshire B (2010) Creep and creep fracture of 2.25 Cr–1.6 W steels (Grade 23). Mater Sci Eng A 527:4932–4938. doi: 10.1016/j.msea.2010.04.033 CrossRefGoogle Scholar
  28. Wilshire B, Scharning PJ (2008) A new methodology for analysis of creep and creep fracture data for 9–12 % chromium steels. Int Mater Rev 53:91–104. doi: 10.1179/174328008X254349 CrossRefGoogle Scholar
  29. Yang F (2011) Development of heat resistant steel used in 600 °C and 700 °C ultra-supercritical power plant and their welding material. The 2011 congress of ultra-supercritical power plant. Chinese Society of Power Engineer, Shantou, pp 15–20Google Scholar
  30. Yang W, Qiang W (2009) Mechanical behavior of materials. Chemical Industry Press, BeijingGoogle Scholar
  31. Yin YF, Faulkner RG (2008) Creep life predictions in 9 %Cr ferritic steels. In: Proceeding of international conference on new developments on metallurgy and applications of high strength steels (TMS), vol 1: plenary lectures, automotive applications, high temperature applications, and oils and gases applications. Buenos Aires, Argentina, pp 283–296Google Scholar
  32. Zhang JS (2010) High temperature deformation and fracture of materials. Woodhead Publishing, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Yan
    • 1
    Email author
  • Wei Wang
    • 1
  • Yiyin Shan
    • 1
  • Ke Yang
    • 1
  • Wei Sha
    • 2
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations