Skip to main content

Creep of Heat-Resistant Steels

  • Chapter
  • First Online:
9-12Cr Heat-Resistant Steels

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The first part of this chapter addresses the overestimation of the time–temperature parameter method on the allowable creep strength of 9–12 %Cr heat-resistant steels. Creep data of 9 %Cr heat-resistant steels are divided into several ranges according to the creep controlling mechanism. The physically based continuum creep damage mechanics could provide a unified framework for predicting the creep life of steels working at elevated temperature. It is used to analyse the creep rupture properties of a heat-resistant steel used in the supercritical power generation, based on the current experimental database. In the microstructure after creep, the martensitic laths grow in size with time and eventually develop into a subgrain structure. Laves phase grows and collects along the prior austenite grain boundaries during creep and causes the fluctuation of solution and precipitation strengthening effects. The deformed part of the creep specimen has lower hardness than the aged part because stress can accelerate the microstructure evolution. In the final part of the chapter, the creep rupture mechanism of heat-resistant steel under different stress levels is discussed. Under conditions of high stress, the creep rupture mechanism is similar to the ductile fracture at room temperature. This changes to brittle fracture under low stress levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2001) Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater Sci Eng A 319–321:770–773. doi:10.1016/S0921-5093(00)02002-5

    Article  Google Scholar 

  • Armaki HG, Maruyama K, Yoshizawa M, Igarashi M (2008) Prevention of the overestimation of long-term creep rupture life by multiregion analysis in strength enhanced high Cr ferritic steels. Mater Sci Eng A 490:66–71. doi:10.1016/j.msea.2008.01.072

    Article  Google Scholar 

  • Armaki HG, Chen R, Kano S, Maruyama K, Hasegawa Y, Igarashi M (2011) Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement. J Nucl Mater 416:273–279. doi:10.1016/j.jnucmat.2011.06.007

    Article  Google Scholar 

  • Chen Y, Yan W, Hu P, Shan Y, Yang K (2010) Modeling of creep curve of T91 heat resistant steel by CDM. In: International conference on advanced steels, Guilin, China

    Google Scholar 

  • Chen YX, Yan W, Wang W, Shan YY, Yang K (2012a) Constitutive equations of the minimum creep rate for 9 %Cr heat resistant steels. Mater Sci Eng A 534:649–653. doi:10.1016/j.msea.2011.12.022

    Article  Google Scholar 

  • Chen Y, Yang K, Shan Y (2012b) Forecast method for creep-rupture property of ferritic heat resistant steel used for ultra super-critical thermal power generating units. Guangdong Electr Power 25(4):5–8

    Google Scholar 

  • Chen Y, Zhao L, Yan W, Wang W, Shan Y, Yang K (2014) High temperature creep rupture of T23 steel used for ultra-supercritical power plant. Iron Steel 49(2):55–59

    Google Scholar 

  • Dimmler G, Weinert P, Cerjak H (2008) Extrapolation of short-term creep rupture data—the potential risk of over-estimation. Int J Press Vessels Pip 85:55–62. doi:10.1016/j.ijpvp.2007.06.003

    Article  Google Scholar 

  • Dyson B (2000) Use of CDM in materials modeling and component creep life prediction. J Press Vessel Technol 122:281–296. doi:10.1115/1.556185

    Article  Google Scholar 

  • Hald J (2008) Microstructure and long-term creep properties of 9–12 %Cr steels. Int J Press Vessels Pip 85:30–37. doi:10.1016/j.ijpvp.2007.06.010

    Article  Google Scholar 

  • Hasegawa T, Abe YR, Tomita Y, Maruyama N, Sugiyama M (2001) Microstructural evolution during creep test in 9Cr–2W–V–Ta steels and 9Cr–1Mo–V–Nb steels. ISIJ Int 41:922–929. doi:10.2355/isijinternational.41.922

    Article  Google Scholar 

  • Helis L, Toda Y, Hara T, Miyazaki H, Abe F (2009) Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Mater Sci Eng A 510–511:88–94. doi:10.1016/j.msea.2008.04.131

    Article  Google Scholar 

  • Hu P, Yan W, Sha W, Wang W, Guo Z, Shan Y, Yang K (2009) Study on Laves phase in an advanced heat-resistant steel. Front Mater Sci Chin 3:434–441. doi:10.1007/s11706-009-0063-7

    Article  Google Scholar 

  • Hu P, Yan W, Sha W, Wang W, Shan Y, Yang K (2011) Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep. J Mater Sci Technol 27:344–351. doi:10.1016/S1005-0302(11)60072-8

    Article  Google Scholar 

  • Hyde TH, Becker AA, Sun W, Williams JA (2006) Finite-element creep damage analyses of P91 pipes. Int J Press Vessels Pip 83:853–863. doi:10.1016/j.ijpvp.2006.08.013

    Article  Google Scholar 

  • Kimura K, Kushima H, Sawada K (2009) Long-term creep deformation property of modified 9Cr–1Mo steel. Mater Sci Eng A 510–511:58–63. doi:10.1016/j.msea.2008.04.095

    Article  Google Scholar 

  • Kloc L, Skienička V, Ventruba J (2001) Comparison of low stress creep properties of ferritic and austenitic creep resistant steels. Mater Sci Eng A 319–321:774–778. doi:10.1016/S0921-5093(01)00943-1

    Article  Google Scholar 

  • Lee JS, Ghassemi-Armaki H, Maruyama K, Muraki T, Asahi H (2006) Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–VNb steel. Mater Sci Eng A 428:270–275. doi:10.1016/j.msea.2006.05.010

    Article  Google Scholar 

  • Li Q (2006) Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr-2W steel. Metall Mater Trans A 37A:89–97. doi:10.1007/s11661-006-0155-2

    Article  Google Scholar 

  • Maruyama K, Sawada K, Koike J (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi:10.2355/isijinternational.41.641

    Article  Google Scholar 

  • Nabarro FRN (2002) Creep at very low rates. Metall Mater Trans A 33A:213–218. doi:10.1007/s11661-002-0083-8

    Article  Google Scholar 

  • Park KS, Masuyama F, Endo T (2001) Creep modeling for life evaluation of heat-resistant steel with a martensitic structure. ISIJ Int 41:S86–S90. doi:10.2355/isijinternational.41.Suppl_S86

    Article  Google Scholar 

  • Peng ZF, Dang YY, Peng F (2010) Study on creep-rupture property assessment method for 9 %-12 %Cr ferritic heat-resistant steels. Acta Metall Sin 46:435–443. doi:10.3724/SP.J.1037.2009.00652

    Article  Google Scholar 

  • Pétry C, Lindet G (2009) Modelling creep behaviour and failure of 9Cr–0.5Mo–1.8W–VNb steel. Int J Press Vessels Pip 86:486–494. doi:10.1016/j.ijpvp.2009.03.006

    Article  Google Scholar 

  • Sawada K, Kubo K, Abe F (2001) Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater Sci Eng A 319–321:784–787. doi:10.1016/S0921-5093(01)00973-X

    Article  Google Scholar 

  • Thomas Paul V, Saroja S, Vijayalakshmi M (2008) Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures. J Nucl Mater 378:273–281. doi:10.1016/j.jnucmat.2008.06.033

    Article  Google Scholar 

  • Whittaker MT, Wilshire B (2010) Creep and creep fracture of 2.25 Cr–1.6 W steels (Grade 23). Mater Sci Eng A 527:4932–4938. doi:10.1016/j.msea.2010.04.033

    Article  Google Scholar 

  • Wilshire B, Scharning PJ (2008) A new methodology for analysis of creep and creep fracture data for 9–12 % chromium steels. Int Mater Rev 53:91–104. doi:10.1179/174328008X254349

    Article  Google Scholar 

  • Yang F (2011) Development of heat resistant steel used in 600 °C and 700 °C ultra-supercritical power plant and their welding material. The 2011 congress of ultra-supercritical power plant. Chinese Society of Power Engineer, Shantou, pp 15–20

    Google Scholar 

  • Yang W, Qiang W (2009) Mechanical behavior of materials. Chemical Industry Press, Beijing

    Google Scholar 

  • Yin YF, Faulkner RG (2008) Creep life predictions in 9 %Cr ferritic steels. In: Proceeding of international conference on new developments on metallurgy and applications of high strength steels (TMS), vol 1: plenary lectures, automotive applications, high temperature applications, and oils and gases applications. Buenos Aires, Argentina, pp 283–296

    Google Scholar 

  • Zhang JS (2010) High temperature deformation and fracture of materials. Woodhead Publishing, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, W., Wang, W., Shan, Y., Yang, K., Sha, W. (2015). Creep of Heat-Resistant Steels. In: 9-12Cr Heat-Resistant Steels. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-14839-7_8

Download citation

Publish with us

Policies and ethics