Microstructural Stability of Heat-Resistant Steels

  • Wei YanEmail author
  • Wei Wang
  • Yiyin Shan
  • Ke Yang
  • Wei Sha
Part of the Engineering Materials book series (ENG.MAT.)


The microstructural evolution of advanced 9–12 %Cr ferritic/martensitic heat-resistant steels used for power generation plants is discussed in this chapter. Despite the small differences in chemical compositions, the steels share the same microstructure of the tempered martensite. It is the thermal stability of the initial microstructure that controls the creep behaviour of these heat-resistant steels. The microstructural evolution in 9–12 %Cr ferrite heat-resistant steels includes (1) martensitic lath widening, (2) disappearance of prior austenite grain boundary, (3) emergence of subgrains, (4) growth and coarsening of precipitates and (5) formation of new precipitates, specifically Laves phase and Z phase. The first three microstructural processes could be retarded by properly disposing of the last two. Namely, improving the stability of precipitates and optimising their size distribution can effectively exert the beneficial influence of precipitates on microstructures. In this sense, the microstructural stability of the tempered martensite is in fact the stability of precipitates during the creep. The creep stress could promote the formation of Laves phase. Many attempts have been made to improve the microstructural stability of 9–12 %Cr steels and several promising heat-resistant steels have been developed.


Lave Phase Creep Strength Martensitic Lath Subgrain Boundary M23C6 Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe F (2001) Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater Sci Eng A 319–321:770–773. doi: 10.1016/S0921-5093(00)02002-5 CrossRefGoogle Scholar
  2. Abe F (2003) Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel. Metall Mater Trans A 34A:913–925. doi: 10.1007/s11661-003-0222-x CrossRefGoogle Scholar
  3. Abe F (2007) Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation. Key Eng Mater 345–346:569–572. doi: 10.4028/ CrossRefGoogle Scholar
  4. Abe F, Semba H, Sakuraya T (2007) Effect of boron on microstructure and creep deformation behavior of tempered martensitic 9Cr steel. Mater Sci Forum 539–543:2982–2987. doi: 10.4028/ CrossRefGoogle Scholar
  5. Aghajani A, Somsen Ch, Eggeler G (2009a) On the effect of long-term creep on the microstructure of a 12 % chromium tempered martensite ferritic steel. Acta Mater 57:5093–5106. doi: 10.1016/j.actamat.2009.07.010 CrossRefGoogle Scholar
  6. Aghajani A, Somsen Ch, Pesicka J, Bendick W, Hahn B, Eggeler G (2009b) Microstructural evolution in T24, a modified 2(1/4)Cr–1Mo steel during creep after different heat treatments. Mater Sci Eng A 510–511:130–135. doi: 10.1016/j.msea.2008.08.049 CrossRefGoogle Scholar
  7. Aghajani A, Richter F, Somsen C, Fries SG, Steinbach I, Eggeler G (2009c) On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12 % chromium tempered martensite ferritic steel. Scr Mater 61:1068–1071. doi: 10.1016/j.scriptamat.2009.08.031 CrossRefGoogle Scholar
  8. Bendick W, Gabrel J, Hahn B, Vandenberghe B (2007) New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application. Int J Press Vessels Pip 84:13–20. doi: 10.1016/j.ijpvp.2006.09.002 CrossRefGoogle Scholar
  9. Bhandarkar MD, Bhat MS, Parker ER, Zackay VF (1976) Creep and fracture of a Laves phase strengthened ferritic alloy. Metall Trans A 7A:753–760. doi: 10.1007/BF03186808 CrossRefGoogle Scholar
  10. Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ (2010) Conversion of MX nitrides to Z-phase in a martensitic 12 %Cr steel. Acta Mater 58:669–679. doi: 10.1016/j.actamat.2009.09.045 CrossRefGoogle Scholar
  11. Cui J, Kim IS, Kang CY, Miyahara K (2001) Creep stress effect on the precipitation behavior of Laves phase in Fe-10 %Cr-6 %W alloys. ISIJ Int 41:368–371. doi: 10.2355/isijinternational.41.368 CrossRefGoogle Scholar
  12. Danielsen HK, Hald J (2006) Behaviour of Z phase in 9–12 %Cr steels. Energ Mater 1:49–57. doi: 10.1179/174892306X99732 CrossRefGoogle Scholar
  13. Danielsen HK, Hald J (2007) A thermodynamic model of the Z-phase Cr(V, Nb)N. Calphad 31:505–514. doi: 10.1016/j.calphad.2007.04.001 CrossRefGoogle Scholar
  14. Danielsen HK, Hald J (2009a) On the nucleation and dissolution process of Z-phase Cr(V, Nb)N in martensitic 12 %Cr steels. Mater Sci Eng A 505:169–177. doi: 10.1016/j.msea.2008.11.019 CrossRefGoogle Scholar
  15. Danielsen HK, Hald J (2009b) Tantalum-containing Z-phase in 12 %Cr martensitic steels. Scr Mater 60:811–813. doi: 10.1016/j.scriptamat.2009.01.025 CrossRefGoogle Scholar
  16. Danielsen HK, Hald J, Somers MAJ (2012) Atomic resolution imaging of precipitate transformation from cubic TaN to tetragonal CrTaN. Scr Mater 66:261–264. doi: 10.1016/j.scriptamat.2011.11.005 CrossRefGoogle Scholar
  17. de Castro V, Leguey T, Muñoz A, Monge MA, Fernández P, Lancha AM, Pareja R (2007) Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97. J Nucl Mater 367–370:196–201. doi: 10.1016/j.jnucmat.2007.03.146 CrossRefGoogle Scholar
  18. Dimmler G, Weinert P, Kozeschnik E, Cerjak H (2003) Quantification of the Laves-phase in advanced 9–12 %Cr steels using a standard SEM. Mater Charact 51:341–352. doi: 10.1016/j.matchar.2004.02.003 CrossRefGoogle Scholar
  19. Dronhofer A, Pešicka J, Dlouhý A, Eggeler G (2003) On the nature of internal interfaces in tempered martensite ferritic steels. Z Metallkd 94:511–520. doi: 10.3139/146.030511 CrossRefGoogle Scholar
  20. Fernández P, Hernández-Mayoral M, Lapeña J, Lancha AM, De Diego G (2002) Correlation between microstructure and mechanical properties of reduced activation modified F-82H ferritic martensitic steel. Mater Sci Technol 18:1353–1362. doi: 10.1179/026708302225007411 CrossRefGoogle Scholar
  21. Ghassemi-Armaki H, Chen RP, Maruyama K, Yoshizawa M, Igarashi M (2009) Static recovery of tempered lath martensite microstructures during long-term aging in 9–12 %Cr heat resistant steels. Mater Lett 63:2423–2425. doi: 10.1016/j.matlet.2009.08.024 CrossRefGoogle Scholar
  22. Ghassemi-Armaki H, Chen RP, Maruyama K, Igarashi M (2011) Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 pct Cr ferritic steels. Metall Mater Trans A 42A:3084–3094. doi: 10.1007/s11661-011-0726-8 CrossRefGoogle Scholar
  23. Golpayegani A, Andrén HO, Danielsen H, Hald J (2008) A study on Z-phase nucleation in martensitic chromium steels. Mater Sci Eng A 489:310–318. doi: 10.1016/j.msea.2007.12.022 CrossRefGoogle Scholar
  24. Gustafson Å, Ågren J (2001) Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9 %Cr steel. ISIJ Int 41:356–360. doi: 10.2355/isijinternational.41.356 CrossRefGoogle Scholar
  25. Hald J (2008) Microstructure and long-term creep properties of 9–12 %Cr steels. Int J Press Vessels Pip 85:30–37. doi: 10.1016/j.ijpvp.2007.06.010 CrossRefGoogle Scholar
  26. Hald J, Danielsen HK (2009) Z-phase strengthened martensitic 9–12 %Cr steels. In: Proceedings of 3rd symposium on heat resistant steels and alloys for high efficiency USC power plants. National Institute for Materials Science, Tsukuba, JapanGoogle Scholar
  27. Hald J, Korcakova L (2003) Precipitate stability in creep resistant ferritic steels: experimental investigations and modelling. ISIJ Int 43:420–427. doi: 10.2355/isijinternational.43.420 CrossRefGoogle Scholar
  28. Hättestrand M, Andrén H-O (2001) Microstructural development during ageing of an 11 % chromium steel alloyed with copper. Mater Sci Eng A 318:94–101. doi: 10.1016/S0921-5093(01)01304-1 CrossRefGoogle Scholar
  29. Hu P, Yan W, Sha W, Wang W, Guo Z, Shan Y, Yang K (2009) Study on Laves phase in an advanced heat-resistant steel. Front Mater Sci Chin 3:434–441. doi: 10.1007/s11706-009-0063-7 CrossRefGoogle Scholar
  30. Hu X, Huang L, Yan W, Wang W, Sha W, Shan Y, Yang K (2013) Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging. Mater Sci Eng A 586:253–258. doi: 10.1016/j.msea.2013.08.025 CrossRefGoogle Scholar
  31. Huang L, Hu X, Yang C, Yan W, Xiao F, Shan Y, Yang K (2013) Influence of thermal aging on microstructure and mechanical properties of CLAM steel. J Nucl Mater 443:479–483. doi: 10.1016/j.jnucmat.2013.08.008 CrossRefGoogle Scholar
  32. Keller C, Margulies MM, Hadjem-Hamouche Z, Guillot I (2010) Influence of the temperature on the tensile behaviour of a modified 9Cr–1Mo T91 martensitic steel. Mater Sci Eng A 527:6758–6764. doi: 10.1016/j.msea.2010.07.021 CrossRefGoogle Scholar
  33. Kimura K, Toda Y, Kushima H, Sawada K (2010) Creep strength of high chromium steel with ferrite matrix. Int J Press Vessels Pip 87:282–288. doi: 10.1016/j.ijpvp.2010.03.016 CrossRefGoogle Scholar
  34. Klimenkov M, Lindau R, Möslang A (2009) New insights into the structure of ODS particles in the ODS-Eurofer alloy. J Nucl Mater 386–388:553–556. doi: 10.1016/j.jnucmat.2008.12.174 CrossRefGoogle Scholar
  35. Knežević V, Balun J, Sauthoff G, Inden G, Schneider A (2008) Design of martensitic/ferritic heat-resistant steels for application at 650 °C with supporting thermodynamic modelling. Mater Sci Eng A 477:334–343. doi: 10.1016/j.msea.2007.05.047 CrossRefGoogle Scholar
  36. Kostka A, Tak K-G, Hellmig RJ, Estrin Y, Eggeler G (2007) On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater 55:539–550. doi: 10.1016/j.actamat.2006.08.046 CrossRefGoogle Scholar
  37. Lee JS, Ghassemi-Armaki H, Maruyama K, Maruki T, Asahi H (2006) Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel. Mater Sci Eng A 428:270–275. doi: 10.1016/j.msea.2006.05.010 CrossRefGoogle Scholar
  38. Li Q (2006) Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr-2W steel. Metall Mater Trans A 37A:89–97. doi: 10.1007/s11661-006-0155-2 CrossRefGoogle Scholar
  39. Liu F, Fors DHR, Golpayegani A, Andrén H-O, Wahnström G (2012) Effect of boron on carbide coarsening at 873 K (600 °C) in 9 to 12 pct chromium steels. Metall Mater Trans A 43A:4053–4062. doi: 10.1007/s11661-012-1205-6 CrossRefGoogle Scholar
  40. Maruyama K, Sawada K, Koike J (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi: 10.2355/isijinternational.41.641 CrossRefGoogle Scholar
  41. Miyata K, Sawaragi Y, Okada H, Masuyama F, Yokoyama T, Komai N (2000) Microstructural evolution of a 12Cr–2W–Cu–V–Nb steel during three-year service exposure. ISIJ Int 40:1156–1163. doi: 10.2355/isijinternational.40.1156 CrossRefGoogle Scholar
  42. Muneki S, Igarashi M, Abe F (2000) Creep characteristics of precipitation hardened carbon free martensitic alloys. Key Eng Mater 171–174:491–498. doi: 10.4028/ CrossRefGoogle Scholar
  43. Nie M, Zhang J, Huang F, Liu JW, Zhu XK, Chen ZL, Ouyang LZ (2014) Microstructure evolution and life assessment of T92 steel during long-term creep. J Alloy Compd 588:348–356. doi: 10.1016/j.jallcom.2013.11.080 CrossRefGoogle Scholar
  44. Olier P, Bougault A, Alamo A, de Carlan Y (2009) Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties. J Nucl Mater 386–388:561–563. doi: 10.1016/j.jnucmat.2008.12.177 CrossRefGoogle Scholar
  45. Panait CG, Bendick W, Fuchsmann A, Gourgues-Lorenzon A-F, Besson J (2010a) Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600 °C. Int J Press Vessels Pip 87:326–335. doi: 10.1016/j.ijpvp.2010.03.017 CrossRefGoogle Scholar
  46. Panait CG, Zielińska-Lipiec A, Koziel T, Czyrska-Filemonowicz A, Gourgues-Lorenzon A-F, Bendick W (2010b) Evolution of dislocation density, size of subgrains and MX-type precipitatesin a P91 steel during creep and during thermal ageing at 600 °C for more than 100,000 h. Mater Sci Eng A 527:4062–4069. doi: 10.1016/j.msea.2010.03.010 CrossRefGoogle Scholar
  47. Pešička J, Kužel R, Dronhofer A, Eggeler G (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51:4847–4862. doi: 10.1016/S1359-6454(03)00324-0 CrossRefGoogle Scholar
  48. Pešička J, Dronhofer A, Eggeler G (2004) Free dislocations and boundary dislocations in tempered martensite ferritic steels. Mater Sci Eng A 387–389:176–180. doi: 10.1016/j.msea.2004.03.080 Google Scholar
  49. Qin Y, Götz G, Blum W (2003) Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1. Mater Sci Eng A 341:211–215. doi: 10.1016/S0921-5093(02)00215-0 CrossRefGoogle Scholar
  50. Sato M, Hasegawa Y, Muraki T, Maruyama K (2000) Correlation between creep strength and stability of subgrain structure in high chromium ferritic heat resistant steel with tungsten. J Jpn Inst Metal 64:371–374Google Scholar
  51. Sawada K, Maruyama K, Hasegawa Y, Muraki T (2000) Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure. Key Eng Mater 171–174:109–114. doi: 10.4028/ CrossRefGoogle Scholar
  52. Sawada K, Taneike M, Kimura K, Abe F (2003) In situ observation of recovery of lath structure in 9 % chromium creep resistant steel. Mater Sci Technol 19:739–742. doi: 10.1179/026708303225010696 CrossRefGoogle Scholar
  53. Sawada K, Taneike M, Kimura K, Abe F (2004) Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel. ISIJ Int 44:1243–1249. doi: 10.2355/isijinternational.44.1243 CrossRefGoogle Scholar
  54. Sawada K, Kushima H, Kimura K, Tabuchi M (2007) TTP diagrams of Z phase in 9–12 %Cr heat-resistant steels. ISIJ Int 47:733–739. doi: 10.2355/isijinternational.47.733 CrossRefGoogle Scholar
  55. Schaeublin R, Leguey T, Spätig P, Baluc N, Victoria M (2002) Microstructure and mechanical properties of two ODS ferritic/martensitic steels. J Nucl Mater 307–311:778–782. doi: 10.1016/S0022-3115(02)01193-5 CrossRefGoogle Scholar
  56. Schäfer L (2000) Tensile and impact behavior of the reduced-activation steels OPTIFER and F82H mod. J Nucl Mater 283–287:707–710. doi: 10.1016/S0022-3115(00)00115-X CrossRefGoogle Scholar
  57. Taneike M, Abe F, Sawada K (2003) Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature 424:294–296. doi: 10.1038/nature01740 CrossRefGoogle Scholar
  58. Taneike M, Sawada K, Abe F (2004) Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall Mater Trans A 35A:1255–1262. doi: 10.1007/s11661-004-0299-x CrossRefGoogle Scholar
  59. Tak K-G, Schulz U, Eggeler G (2009) On the effect of micrograin crystallography on creep of FeCr alloys. Mater Sci Eng A 510–511:121–129. doi: 10.1016/j.msea.2008.11.070 CrossRefGoogle Scholar
  60. Toda Y, Iijima M, Kushima H, Kimura K, Abe F (2005) Effects of Ni and heat treament on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels. ISIJ Int 45:1747–1753. doi: 10.2355/isijinternational.45.1747 CrossRefGoogle Scholar
  61. Yan W, Wang W, Shan Y, Yang K (2013) Microstructural stability of 9–12 %Cr ferrite/martensite heat-resistant steels. Front Mater Sci 7:1–27. doi: 10.1007/s11706-013-0189-5 CrossRefGoogle Scholar
  62. Yin F, Jung W, Chung S (2007) Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel. Scr Mater 57:469–472. doi: 10.1016/j.scriptamat.2007.05.034 CrossRefGoogle Scholar
  63. Yu G, Nita N, Baluc N (2005) Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels. Fusion Eng Des 75–79:1037–1041. doi: 10.1016/j.fusengdes.2005.06.311 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wei Yan
    • 1
    Email author
  • Wei Wang
    • 1
  • Yiyin Shan
    • 1
  • Ke Yang
    • 1
  • Wei Sha
    • 2
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations