Skip to main content

Nitride-Strengthened Reduced Activation Heat-Resistant Steels

  • Chapter
  • First Online:
9-12Cr Heat-Resistant Steels

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1024 Accesses

Abstract

Nitride-strengthened reduced activation ferritic/martensitic steels are anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Such steels with different manganese contents are designed based on the chemical composition of Eurofer97 steel but the carbon content is reduced to an extremely low level. The larger amount of vanadium-rich nitrides and more dissolved chromium in the matrix could be responsible for the similar strength to Eurofer97 steel. The steels have the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and display extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 % in wt%), the steel with high carbon content (0.012 % in wt%) has not only the higher strength but also the higher impact toughness and grain coarsening temperature. The complicated Al2O3 inclusions are responsible for the initiated cleavage fracture by acting as the critical cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Taneike M, Sawada K (2007) Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int J Press Vessels Pip 84:3–12. doi:10.1016/j.ijpvp.2006.09.003

    Article  Google Scholar 

  • Baluc N, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Odette GR, van der Schaaf B, Yu J (2007) Status of reduced activation ferritic/martensitic steel development. J Nucl Mater 367–370:33–41. doi:10.1016/j.jnucmat.2007.03.036

    Article  Google Scholar 

  • Blach J, Falat L, Ševc P (2009) Fracture characteristics of thermally exposed 9Cr-1Mo steel after tensile and impact testing at room temperature. Eng Fail Anal 16:1397–1403. doi:10.1016/j.engfailanal.2008.09.003

    Article  Google Scholar 

  • Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ (2010) Conversion of MX nitrides to Z-phase in a martensitic 12 %Cr steel. Acta Mater 58:669–679. doi:10.1016/j.actamat.2009.09.045

    Article  Google Scholar 

  • Danielsen HK, Hald J (2004) Z-phase in 9-12 %Cr steels. In: Viswanathan R, Gandy D, Coleman K (eds) Proceedings of the 4th international conference on advances in materials technology for fossil power plants. ASM International, Materials Park, OH, pp 999–1012

    Google Scholar 

  • Danielsen HK, Hald J (2006) Behaviour of Z phase in 9–12 %Cr steels. Energ Mater 1:49–57. doi:10.1179/174892306X99732

    Article  Google Scholar 

  • Danielsen HK, Hald J (2007) A thermodynamic model of the Z-phase Cr(V, Nb)N. CALPHAD 31:505–514. doi:10.1016/j.calphad.2007.04.001

    Article  Google Scholar 

  • Ghassemi-Armaki H, Chen RP, Maruyama K, Yoshizawa M, Igarashi M (2009) Static recovery of tempered lath martensite microstructures during long-term aging in 9-12 %Cr heat resistant steels. Mater Lett 63:2423–2425. doi:10.1016/j.matlet.2009.08.024

    Article  Google Scholar 

  • Hald J (2008) Microstructure and long-term creep properties of 9-12 %Cr steels. Int J Press Vessels Pip 85:30–37. doi:10.1016/j.ijpvp.2007.06.010

    Article  Google Scholar 

  • Hesabi ZR, Simchi A, Reihani SMS (2006) Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites. Mater Sci Eng A 428:159–168. doi:10.1016/j.msea.2006.04.116

    Article  Google Scholar 

  • Hu X, Xiao N, Luo X, Li D (2009) Effects of delta-ferrite on the microstructure and mechanical properties in a tungsten-alloyed 10 %Cr ultra-supercritical steel. Acta Metall Sin 45:553–558

    Google Scholar 

  • Hu P, Yan W, Deng L, Sha W, Shan Y, Yang K (2010) Nitride-strengthened reduced activation ferritic/martensitic steels. Fusion Eng Des 85:1632–1637. doi:10.1016/j.fusengdes.2010.04.066

    Article  Google Scholar 

  • Jitsukawa S, Tamura M, van der Schaaf B, Klueh RL, Alamo A, Petersen C, Schirra M, Spaetig P, Odette GR, Tavassoli AA, Shiba K, Kohyama A, Kimura A (2002) Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H. J Nucl Mater 307–311:179–186. doi:10.1016/S0022-3115(02)01075-9

    Article  Google Scholar 

  • Jun HJ, Kang JS, Seo DH, Kang KB, Park CG (2006) Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels. Mater Sci Eng A 422:157–162. doi:10.1016/j.msea.2005.05.008

    Article  Google Scholar 

  • Kimura K, Toda Y, Kushima H, Sawada K (2010) Creep strength of high chromium steel with ferrite matrix. Int J Press Vessels Pip 87:282–288. doi:10.1016/j.ijpvp.2010.03.016

    Article  Google Scholar 

  • Klueh RL (2005) Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int Mater Rev 50:287–310. doi:10.1179/174328005X41140

    Article  Google Scholar 

  • Li Y, Huang Q, Wu Y (2006) Study on impact and tensile properties of CLAM steel. Nucl Phys Rev 23:151–154

    Google Scholar 

  • Li Y, Nagasaka T, Muroga T (2010) Long-term thermal stability of reduced activation ferritic/martensitic steels as structural materials of fusion blanket. Plasma Fusion Res 5:S1036. doi:10.1585/pfr.5.S1036

    Article  Google Scholar 

  • Lu Z, Faulkner RG, Riddle N, Martino FD, Yang K (2009) Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels. J Nucl Mater 386–388:445–448. doi:10.1016/j.jnucmat.2008.12.152

    Article  Google Scholar 

  • Maruyama K, Sawada K, Koike JI (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi:10.2355/isijinternational.41.641

    Article  Google Scholar 

  • Mungole MN, Sahoo G, Bhargava S, Balasubramaniam R (2008) Recrystalised grain morphology in 9Cr 1Mo ferritic steel. Mater Sci Eng A 476:140–145. doi:10.1016/j.msea.2007.04.105

    Article  Google Scholar 

  • Pešička J, Kužel R, Dronhofer A, Eggeler G (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51:4847–4862. doi:10.1016/S1359-6454(03)00324-0

    Article  Google Scholar 

  • Poulachon G, Dessoly M, Lebrun JL, Le Calvez C, Prunet V, Jawahir IS (2002) Sulphide inclusion effects on tool-wear in high productivity milling of tool steels. Wear 253:339–356. doi:10.1016/S0043-1648(02)00122-9

    Article  Google Scholar 

  • Reith M, Schirra M, Falkenstein A, Graf P, Heger S, Kempe H, Lindau R, Zimmermann H (2003) EUROFER 97. Tensile, charpy, creep and structural tests. Wissenschaftliche Berichte FZKA 6911

    Google Scholar 

  • Ryu SH, Lee YS, Kong BO, Kim JT, Kwak DH, Nam SW, Vandenberghe B (2006) Effects of delta-ferrite phase on mechanical properties of P92 steel. In: Proceedings of the 3rd international conference on advanced structural steels. The Korean Institute of Metals and Materials, pp 563–569

    Google Scholar 

  • Sawada K, Kubo K, Abe F (2001) Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater Sci Eng A 319–321:784–787. doi:10.1016/S0921-5093(01)00973-X

    Article  Google Scholar 

  • Sawada K, Kimura K Abe F (2003) Mechanical response of 9 %Cr heat-resistant martensitic steels to abrupt stress loading at high temperature. Mater Sci Eng A 358:52–58. doi:10.1016/S0921-5093(03)00326-5

  • Sawada K, Taneike M, Kimura K, Abe F (2004) Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel. ISIJ Int 44:1243–1249. doi:10.2355/isijinternational.44.1243

    Article  Google Scholar 

  • Sawada K, Kushima H, Kimura K, Tabuchi M (2007) TTP diagrams of Z phase in 9-12 %Cr heat-resistant steels. ISIJ Int 47:733–739. doi:10.2355/isijinternational.47.733

    Article  Google Scholar 

  • Shen YZ, Kim SH, Han CH, Cho HD, Ryu WS (2009) TEM investigations of MN nitride phases in a 9 % chromium ferritic/martensitic steel with normalization conditions for nuclear reactors. J Nucl Mater 384:48–55. doi:10.1016/j.jnucmat.2008.10.005

    Article  Google Scholar 

  • Sklenička V, Kuchařová K, Svoboda M, Kloc L, Buršík J, Kroupa A (2003) Long-term creep behavior of 9-12 %Cr power plant steels. Mater Charact 51:35–48. doi:10.1016/j.matchar.2003.09.012

    Article  Google Scholar 

  • Taneike M, Sawada K, Abe F (2004) Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall Mater Trans A 35A:1255–1262. doi:10.1007/s11661-004-0299-x

    Article  Google Scholar 

  • Tanigawa H, Shiba K, Möslang A, Stoller RE, Lindau R, Sokolov MA, Odette GR, Kurtz RJ, Jitsukaw S (2011) Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket. J Nucl Mater 417:9–15. doi:10.1016/j.jnucmat.2011.05.023

    Article  Google Scholar 

  • Yamada K, Igarashi M, Muneki S, Abe F (2003) Effect of Co addition on microstructure in high Cr ferritic steels. ISIJ Int 43:1438–1443. doi:10.2355/isijinternational.43.1438

    Article  Google Scholar 

  • Yan W, Shan YY, Yang K (2007) Influence of TiN inclusions on the cleavage fracture behavior of low-carbon microalloyed steels. Metall Mater Trans A 38A:1211–1222. doi:10.1007/s11661-007-9161-2

    Article  Google Scholar 

  • Yan W, Hu P, Deng L, Wang W, Sha W, Shan Y, Yang K (2012) Effect of carbon reduction on the toughness of 9CrWVTaN steels. Metall Mater Trans A 43A:1921–1933. doi:10.1007/s11661-011-1046-8

    Article  Google Scholar 

  • Yllmaz Ş, Ipek M, Celebi GF, Bindal C (2005) The effect of bond coat on mechanical properties of plasma sprayed Al2O3 and Al2O3–13 wt%TiO2 coatings on AISI 316L stainless steel. Vacuum 77:315–321. doi:10.1016/j.vacuum.2004.11.004

    Article  Google Scholar 

  • Yong Q (2006) The Second Phase in Steels. Metallurgical Industry Press, Beijing

    Google Scholar 

  • Yoshizawa M, Igarashi M (2007) Long-term creep deformation characteristics of advanced ferritic steels for USC power plants. Int J Press Vessels Pip 84:37–43. doi:10.1016/j.ijpvp.2006.09.005

    Article  Google Scholar 

  • Zhang L, Thomas BG (2003) State of the art in evaluation and control of steel cleanliness. ISIJ Int 43:271–291. doi:10.2355/isijinternational.43.271

    Article  Google Scholar 

  • Zhang L, Thomas BG, Wang X, Cai K (2002) Evaluation and control of steel cleanliness-review. In: 85th steelmaking conference proceedings. ISS-AIME, Warrendale, PA, pp 431–452

    Google Scholar 

  • Zhou Q, Zhang W, Yan W, Wang W, Sha W, Shan Y, Yang K (2012) Microstructure and mechanical properties of a nitride-strengthened reduced activation ferritic/martensitic steel. Metall Mater Trans A 43A:5079–5087. doi:10.1007/s11661-012-1311-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, W., Wang, W., Shan, Y., Yang, K., Sha, W. (2015). Nitride-Strengthened Reduced Activation Heat-Resistant Steels. In: 9-12Cr Heat-Resistant Steels. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-14839-7_5

Download citation

Publish with us

Policies and ethics