Skip to main content

Carbide-Strengthened Reduced Activation Heat-Resistant Steels

  • Chapter
  • First Online:
9-12Cr Heat-Resistant Steels

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Higher strength and lower ductile-brittle transition temperature are obtained by vacuum induction melting (VIM), electroslag remelting (ESR) and vacuum consumable electrode melting (VAR) compared to VIM alone, because of the good solution of the tantalum in martensite. Processes of VIM+ESR+VAR decrease the size of laths and improve the distribution of non-metallic inclusions in the China Low Activation Martensitic (CLAM) steel. The effect of the rare earth element yttrium on the mechanical properties of 9Cr22WVTa low activation martensitic steel for fusion reactor is discussed. It is easy for yttrium to aggregate and form blocky yttrium-rich inclusions in the steel, which disrupts the continuity of the matrix and produces microcracks for fracture. The yttrium-rich inclusions are distributed along the rolling direction, which makes the fracture surface delaminated under tension and impact. The final part of the chapter analyses the effect of normalising and tempering heat treatment processes on the microstructure and mechanical properties of ton-scale CLAM steel. The normalising temperature decides the prior austenite grain size, while the tempering temperature influences the substructures. Compared with the normalising temperature, tempering temperature has larger effect on the mechanical properties of CLAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2003) Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel. Metall Mater Trans A 34A:913–925. doi:10.1007/s11661-003-0222-x

    Article  Google Scholar 

  • Agamennone R, Blum W, Gupta C, Chakravartty JK (2006) Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12 %Cr–2 %W–5 %Co steels. Acta Mater 54:3003–3014. doi:10.1016/j.actamat.2006.02.038

    Article  Google Scholar 

  • Baluc N, Schäublin R, Spätig P, Victoria M (2004) On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors. Nucl Fusion 44:56–61. doi:10.1088/0029-5515/44/1/006

    Article  Google Scholar 

  • Baluc N, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Odette GR, van der Schaaf B, Yu J (2007) Status of reduced activation ferritic/martensitic steel development. J Nucl Mater 367–370:33–41. doi:10.1016/j.jnucmat.2007.03.036

    Article  Google Scholar 

  • Dhua SK, Ray A, Sen SK, Prasad MS, Mishra KB, Jha S (2000) Influence of nonmetallic inclusion characteristics on the mechanical properties of rail steel. J Mater Eng Perform 9:700–709. doi:10.1361/105994900770345584

    Article  Google Scholar 

  • Huang Q, Li J, Chen Y (2004a) Study of irradiation effects in China low activation martensitic steel CLAM. J Nucl Mater 329–333:268–272. doi:10.1016/j.jnucmat.2004.04.056

    Article  Google Scholar 

  • Huang Q, Yu J, Wan F, Li J, Wu Y (2004b) The development of low activation martensitic steels for fusion reactor. Chin J Nucl Sci Eng 24(1):56–64

    Google Scholar 

  • Huang Q, Li C, Li Y, Chen M, Zhang M, Peng L, Zhu Z, Song Y, Gao S (2007) Progress in development of China Low Activation Martensitic steel for fusion application. J Nucl Mater 367–370:142–146. doi:10.1016/j.jnucmat.2007.03.153

    Article  Google Scholar 

  • Huang L, Hu X, Yan W, Xiao F, Shan Y, Yang K (2013) Effect of heat treatment processes on microstructure and mechanical properties of ton-scale China low activation martensitic steel. At Energ Sci Technol 47(z2):412–416

    Google Scholar 

  • ITER-FEAT Outline Design Report (2000). ITER Meeting, Tokyo

    Google Scholar 

  • Jitsukawa S, Tamura M, van der Schaaf B, Klueh RL, Alamo A, Petersen C, Schirra M, Spaetig P, Odette GR, Tavassoli AA, Shiba K, Kohyama A, Kimura A (2002) Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H. J Nucl Mater 307–311:179–186. doi:10.1016/S0022-3115(02)01075-9

    Article  Google Scholar 

  • Kimura A, Kasada R, Kohyama A, Tanigawa H, Hirose T, Shiba K, Jitsukawa S, Ohtsuka S, Ukai S, Sokolov MA, Klueh RL, Yamamoto T, Odette GR (2007) Recent progress in US–Japan collaborative research on ferrite steels R&D. J Nucl Mater 367–370:60–67. doi:10.1016/j.jnucmat.2007.03.013

    Article  Google Scholar 

  • Klueh RL, Alexander DJ, Sokolov MA (2002a) Effect of chromium, tungsten, tantalum, and boron on mechanical properties of 5–9Cr–WVTaB steels. J Nucl Mater 304:139–152. doi:10.1016/S0022-3115(02)00885-1

    Article  Google Scholar 

  • Klueh RL, Gelles DS, Jitsukawa S, Kimura A, Odette GR, van der Schaaf B, Victoria M (2002b) Ferritic/martensitic steels—overview of recent results. J Nucl Mater 307–311:455–465. doi:10.1016/S0022-3115(02)01082-6

    Article  Google Scholar 

  • Klueh RL, Nelson AT (2007) Ferritic/martensitic steels for next generation reactors. J Nucl Mater 371:37–52. doi:10.1016/j.jnucmat.2007.05.005

    Article  Google Scholar 

  • Kostka A, Tak K-G, Hellmig RJ, Estrin Y, Eggeler G (2007) On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater 55:539–550. doi:10.1016/j.actamat.2006.08.046

    Article  Google Scholar 

  • Maruyama K, Sawada K, Koike J (2001) Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int 41:641–653. doi:10.2355/isijinternational.41.641

    Article  Google Scholar 

  • Masuyama F (2001) History of power plants and progress in heat resistant steels. ISIJ Int 41:612–625. doi:10.2355/isijinternational.41.612

    Article  Google Scholar 

  • Reith M, Schirra M, Falkenstein A, Graf P, Heger S, Kempe H, Lindau R, Zimmermann H (2003) EUROFER 97. Tensile, charpy, creep and structural tests. Wissenschaftliche Berichte FZKA 6911

    Google Scholar 

  • Rojas D, Garcia J, Prat O, Agudo L, Carrasco C, Sauthoff G, Kaysser-Pyzalla AR (2011) Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12 %Cr heat resistant steel during creep at 650 °C. Mater Sci Eng A 528:1372–1381. doi:10.1016/j.msea.2010.10.028

    Article  Google Scholar 

  • Sawada K, Taneike M, Kimura K, Abe F (2003) In situ observation of recovery of lath structure in 9 % chromium creep resistant steel. Mater Sci Technol 19:739–742. doi:10.1179/026708303225010696

    Article  Google Scholar 

  • van der Schaaf B, Gelles DS, Jitsukawa S, Kimura A, Klueh RL, Möslang A, Odette GR (2000) Progress and critical issues of reduced activation ferritic/martensitic steel development. J Nucl Mater 283–287:52–59. doi:10.1016/S0022-3115(00)00220-8

    Article  Google Scholar 

  • van der Schaaf B, Tavassoli F, Fazio C, Rigal E, Diegele E, Lindau R, LeMarois G (2003) The development of EUROFER reduced activation steel. Fusion Eng Des 69:197–203. doi:10.1016/S0920-3796(03)00337-5

    Article  Google Scholar 

  • Wu Y (2007) Design status and development strategy of China liquid lithium–lead blankets and related material technology. J Nucl Mater 367–370:1410–1415. doi:10.1016/j.jnucmat.2007.04.031

    Article  Google Scholar 

  • Yan W, Hu P, Wang W, Zhao L, Shan Y, Yang K (2009) Effect of yttrium on mechanical properties of 9Cr-2WVTa low active martensite steel. Chin J Nucl Sci Eng 29(1):50–55

    Google Scholar 

  • Yang C, Yan W, Wang W, Shan Y, Yang K, Wu Y (2011) Changes of microstructure and mechanical property of the CLAM steel after long term aging at 600 °C. Acta Metall Sin 47:917–920. doi:10.3724/SP.J.1037.2011.00156

    Google Scholar 

  • Yang CG, Yan W, Huang LX, Shan YY, Yang K (2012) Influence of purification on mechanical properties of CLAM steel. In: Materials science and technology conference and exhibition, vol 1. Pittsburgh, PA, USA, pp 536–542

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, W., Wang, W., Shan, Y., Yang, K., Sha, W. (2015). Carbide-Strengthened Reduced Activation Heat-Resistant Steels. In: 9-12Cr Heat-Resistant Steels. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-14839-7_4

Download citation

Publish with us

Policies and ethics