Skip to main content

Nutritional Interventions for Cardiovascular Aging and Age-Related Cardiovascular Diseases

  • Chapter
  • First Online:

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 2))

Abstract

Both morbidity and mortality of cardiovascular diseases (CVDs) increase with age. The increased prevalence of cardiovascular risk factors with age and cardiovascular aging contribute to the association between aging and CVDs. Most developed countries would benefit from the development of novel therapeutics to control cardiovascular aging because they are confronted with an aged society. Dietary restriction (DR) including caloric restriction (CR) and alternate-day fasting is an established nutritional intervention with scientifically proved anti-aging effects. Recent experimental and clinical investigations demonstrate that DR exerts pleiotropic effects on the cardiovascular system. CR prevents the progression of atherosclerosis and vascular aging via direct and indirect mechanisms. CR prevents cardiac senescence by attenuating oxidative damage and enhancing cardiac autophagy, leading to improved cardiac function in aged animals. DR improves myocardial ischemic tolerance in rodents of all ages. DR counteracts age-associated changes in autonomic nerve function. CR may mitigate metabolic cardiomyopathy associated with obesity and type 2 diabetes mellitus. The mechanisms underlying the beneficial cardiovascular effects of DR are multifaceted, but considerable progress has been made in the past decade toward their understanding. Recent investigations reveal that DR triggers an active defense response against stressful conditions. At the center of this response are cardiovascular protective signals, which include the mammalian target of rapamycin, AMP-activated kinase, sirtuins, and endothelial nitric oxide synthase. They form a network with both positive and negative feedbacks. Therefore, DR and CR mimetics that can replicate the effects of CR are promising interventions for regulating cardiovascular aging and managing patients with CVDs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126(9):913–922

    Article  PubMed  CAS  Google Scholar 

  2. McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size 1935. Nutrition 5(3):155–171 (discussion 172)

    Google Scholar 

  3. Shinmura K (2011) Cardiovascular protection afforded by caloric restriction: essential role of nitric oxide synthase. Geriatr Gerontol Int 11(2):143–156

    Article  PubMed  Google Scholar 

  4. Shinmura K (2013) Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. Oxid Med Cell Longev 2013:528935

    PubMed Central  PubMed  Google Scholar 

  5. Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med 32(3):159–221

    Article  PubMed  CAS  Google Scholar 

  6. Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R (2008) Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 102(5):519–528

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Schroeder JE, Richardson JC, Virley DJ (2010) Dietary manipulation and caloric restriction in the development of mouse models relevant to neurological diseases. Biochim Biophys Acta 1802(10):840–846

    Article  PubMed  CAS  Google Scholar 

  8. Shinmura K, Tamaki K, Sano M, Murata M, Yamakawa H, Ishida H, Fukuda K (2011) Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 50(1):117–127

    Article  PubMed  CAS  Google Scholar 

  9. Zainal TA, Oberley TD, Allison DB, Szweda LI, Weindruch R (2000) Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. Faseb J 14(12):1825–1836

    Article  PubMed  CAS  Google Scholar 

  10. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295(13):1539–1548

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Zanetti M, Gortan CG, Burekovic I, Barazzoni R, Stebel M, Guarnieri G (2010) Caloric restriction improves endothelial dysfunction during vascular aging: effects on nitric oxide synthase isoforms and oxidative stress in rat aorta. Exp Gerontol 45(11):848–855

    Article  PubMed  CAS  Google Scholar 

  12. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Mattson MP, Wan R (2005) Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem 16(3):129–137

    Article  PubMed  CAS  Google Scholar 

  14. Ahmet I, Tae HJ, de Cabo R, Lakatta EG, Talan MI (2011) Effects of calorie restriction on cardioprotection and cardiovascular health. J Mol Cell Cardiol 51(2):263–271

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan MI (2010) Chronic alternate-day fasting results in reduced diastolic compliance and diminished systolic reserve in rats. J Card Fail 16(10):843–853

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation 107(2):346–354

    Article  PubMed  Google Scholar 

  17. Shih H, Lee B, Lee RJ, Boyle AJ (2011) The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 57(1):9–17

    Article  PubMed  Google Scholar 

  18. Chatterjee K, Massie B (2007) Systolic and diastolic heart failure: differences and similarities. J Card Fail 13(7):569–576

    Article  PubMed  Google Scholar 

  19. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107(1):139–146

    Article  PubMed  Google Scholar 

  20. Hammer S, Snel M, Lamb HJ, Jazet IM, van der Meer RW, Pijl H, Meinders EA, Romijn JA, de Roos A, Smit JW (2008) Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol 52(12):1006–1012

    Article  PubMed  CAS  Google Scholar 

  21. Riordan MM, Weiss EP, Meyer TE, Ehsani AA, Racette SB, Villareal DT, Fontana L, Holloszy JO, Kovacs SJ (2008) The effects of caloric restriction- and exercise-induced weight loss on left ventricular diastolic function. Am J Physiol Heart Circ Physiol 294(3):H1174–H1182

    Article  PubMed  CAS  Google Scholar 

  22. Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G, Pearson KJ, de Cabo R, Ungvari Z (2009) Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev 130(8):518–527

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 101(17):6659–6663

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Holloszy JO, Fontana L (2007) Caloric restriction in humans. Exp Gerontol 42(8):709–712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, Tamashiro KL, Poosala S, Csiszar A, Ungvari Z, Kensler TW, Yamamoto M, Egan JM, Longo DL, Ingram DK, Navas P, de Cabo R (2008) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci USA 105(7):2325–2330

    Article  PubMed Central  PubMed  Google Scholar 

  26. Stewart TM, Bhapkar M, Das S, Galan K, Martin CK, McAdams L, Pieper C, Redman L, Roberts S, Stein RI, Rochon J, Williamson DA (2013) Comprehensive assessment of long-term effects of reducing intake of energy phase 2 (CALERIE phase 2) screening and recruitment: methods and results. Contemp Clin Trials 34(1):10–20

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Meyer TE, Kovacs SJ, Ehsani AA, Klein S, Holloszy JO, Fontana L (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47(2):398–402

    Article  PubMed  CAS  Google Scholar 

  28. Varady KA, Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Haus JM, Hoddy KK, Calvo Y (2013) Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J 12(1):146

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317

    Article  PubMed  CAS  Google Scholar 

  30. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100(11):1659–1666

    Article  PubMed  CAS  Google Scholar 

  31. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392

    Article  PubMed  CAS  Google Scholar 

  32. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104(37):14855–14860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, Wei YS, Cai H, Liu DP, Liang CC (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80(2):191–199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Csiszar A, Sosnowska D, Tucsek Z, Gautam T, Toth P, Losonczy G, Colman RJ, Weindruch R, Anderson RM, Sonntag WE, Ungvari Z (2013) Circulating factors induced by caloric restriction in the nonhuman primate Macaca mulatta activate angiogenic processes in endothelial cells. J Gerontol A Biol Sci Med Sci 68(3):235–249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Mager DE, Wan R, Brown M, Cheng A, Wareski P, Abernethy DR, Mattson MP (2006) Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. Faseb J 20(6):631–637

    Article  PubMed  CAS  Google Scholar 

  36. Cain BS, Meldrum DR, Joo KS, Wang JF, Meng X, Cleveland JC Jr, Banerjee A, Harken AH (1998) Human SERCA2a levels correlate inversely with age in senescent human myocardium. J Am Coll Cardiol 32(2):458–467

    Article  PubMed  CAS  Google Scholar 

  37. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part III: cellular and molecular clues to heart and arterial aging. Circulation 107(3):490–497

    Article  PubMed  Google Scholar 

  38. Lieber SC, Qiu H, Chen L, Shen YT, Hong C, Hunter WC, Aubry N, Vatner SF, Vatner DE (2008) Cardiac dysfunction in aging conscious rats: altered cardiac cytoskeletal proteins as a potential mechanism. Am J Physiol Heart Circ Physiol 295(2):H860–H866

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Taffet GE, Pham TT, Hartley CJ (1997) The age-associated alterations in late diastolic function in mice are improved by caloric restriction. J Gerontol A Biol Sci Med Sci 52(6):B285–B290

    Article  PubMed  CAS  Google Scholar 

  40. Dhahbi JM, Tsuchiya T, Kim HJ, Mote PL, Spindler SR (2006) Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol A Biol Sci Med Sci 61(3):218–231

    Article  PubMed  Google Scholar 

  41. Seymour EM, Parikh RV, Singer AA, Bolling SF (2006) Moderate calorie restriction improves cardiac remodeling and diastolic dysfunction in the Dahl-SS rat. J Mol Cell Cardiol 41(4):661–668

    Article  PubMed  CAS  Google Scholar 

  42. Yan L, Gao S, Ho D, Park M, Ge H, Wang C, Tian Y, Lai L, De Lorenzo MS, Vatner DE, Vatner SF (2013) Calorie restriction can reverse, as well as prevent, aging cardiomyopathy. Age 35(6):2177–2182

    Article  PubMed Central  PubMed  Google Scholar 

  43. Inuzuka Y, Okuda J, Kawashima T, Kato T, Niizuma S, Tamaki Y, Iwanaga Y, Yoshida Y, Kosugi R, Watanabe-Maeda K, Machida Y, Tsuji S, Aburatani H, Izumi T, Kita T, Shioi T (2009) Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation 120(17):1695–1703

    Article  PubMed  CAS  Google Scholar 

  44. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Shirasawa T, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6(5):600–606

    Article  PubMed  CAS  Google Scholar 

  45. McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109(24):3050–3055

    Article  PubMed  CAS  Google Scholar 

  46. Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, Chen T, Gu H, Djukovic D, Raftery D, Beyer RP, MacCoss MJ, Rabinovitch PS (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13(3):529–539

    Article  PubMed  CAS  Google Scholar 

  47. Chen K, Kobayashi S, Xu X, Viollet B, Liang Q (2013) AMP activated protein kinase is indispensable for myocardial adaptation to caloric restriction in mice. PLoS ONE 8(3):e59682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Zhang Y, Han X, Hu N, Huff AF, Gao F, Ren J (2014) Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy. J Mol Cell Cardiol 71:81–91

    Article  PubMed  CAS  Google Scholar 

  49. Zheng Q, Zhao K, Han X, Huff AF, Cui Q, Babcock SA, Yu S, Zhang Y (2014) Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy. Biochim Biophys Acta. doi:10.1016/j.bbadis.2014.1004.1023

    Google Scholar 

  50. Castello L, Froio T, Maina M, Cavallini G, Biasi F, Leonarduzzi G, Donati A, Bergamini E, Poli G, Chiarpotto E (2010) Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radic Biol Med 48(1):47–54

    Article  PubMed  CAS  Google Scholar 

  51. Castello L, Maina M, Testa G, Cavallini G, Biasi F, Donati A, Leonarduzzi G, Bergamini E, Poli G, Chiarpotto E (2011) Alternate-day fasting reverses the age-associated hypertrophy phenotype in rat heart by influencing the ERK and PI3 K signaling pathways. Mech Ageing Dev 132(6–7):305–314

    Article  PubMed  CAS  Google Scholar 

  52. Tani M, Honma Y, Takayama M, Hasegawa H, Shinmura K, Ebihara Y, Tamaki K (1999) Loss of protection by hypoxic preconditioning in aging Fischer 344 rat hearts related to myocardial glycogen content and Na+ imbalance. Cardiovasc Res 41(3):594–602

    Article  PubMed  CAS  Google Scholar 

  53. Abete P, Cacciatore F, Testa G, Della-Morte D, Galizia G, de Santis D, Calabrese C, Cioppa A, Ferrara N, Rengo F (2010) Ischemic preconditioning in the aging heart: from bench to bedside. Ageing Res Rev 9(2):153–162

    Article  PubMed  Google Scholar 

  54. Abete P, Testa G, Ferrara N, De Santis D, Capaccio P, Viati L, Calabrese C, Cacciatore F, Longobardi G, Condorelli M, Napoli C, Rengo F (2002) Cardioprotective effect of ischemic preconditioning is preserved in food-restricted senescent rats. Am J Physiol Heart Circ Physiol 282(6):H1978–H1987

    PubMed  CAS  Google Scholar 

  55. Broderick TL, Driedzic WR, Gillis M, Jacob J, Belke T (2001) Effects of chronic food restriction and exercise training on the recovery of cardiac function following ischemia. J Gerontol A Biol Sci Med Sci 56(1):B33–B37

    Article  PubMed  CAS  Google Scholar 

  56. Chandrasekar B, Nelson JF, Colston JT, Freeman GL (2001) Calorie restriction attenuates inflammatory responses to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 280(5):H2094–H2102

    PubMed  CAS  Google Scholar 

  57. Edwards AG, Donato AJ, Lesniewski LA, Gioscia RA, Seals DR, Moore RL (2010) Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK. Mech Ageing Dev 131(11–12):739–742

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Long P, Nguyen Q, Thurow C, Broderick TL (2002) Caloric restriction restores the cardioprotective effect of preconditioning in the rat heart. Mech Ageing Dev 123(10):1411–1413

    Article  PubMed  Google Scholar 

  59. Peart JN, See HL, Pepe S, Johnson P, Headrick JP (2012) Opposing effects of age and calorie restriction on molecular determinants of myocardial ischemic tolerance. Rejuvenation Res 15(1):59–70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Shinmura K, Tamaki K, Bolli R (2005) Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts. J Mol Cell Cardiol 39(2):285–296

    Article  PubMed  CAS  Google Scholar 

  61. Shinmura K, Tamaki K, Bolli R (2008) Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 295(6):H2348–H2355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R (2007) Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116(24):2809–2817

    Article  PubMed  CAS  Google Scholar 

  63. Sung MM, Soltys CL, Masson G, Boisvenue JJ, Dyck JR (2011) Improved cardiac metabolism and activation of the RISK pathway contributes to improved post-ischemic recovery in calorie restricted mice. J Mol Med 89(3):291–302

    Article  PubMed  CAS  Google Scholar 

  64. Schneider CA, Taegtmeyer H (1991) Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart. Circ Res 68(4):1045–1050

    Article  PubMed  CAS  Google Scholar 

  65. Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M (2005) Cardioprotection by intermittent fasting in rats. Circulation 112(20):3115–3121

    Article  PubMed  Google Scholar 

  66. Katare RG, Kakinuma Y, Arikawa M, Yamasaki F, Sato T (2009) Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway. J Mol Cell Cardiol 46(3):405–412

    Article  PubMed  CAS  Google Scholar 

  67. Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J (2011) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32(3):275–281

    Article  PubMed Central  PubMed  Google Scholar 

  68. Yamamoto T, Sadoshima J (2011) Protection of the heart against ischemia/reperfusion by silent information regulator 1. Trends Cardiovasc Med 21(1):27–32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Shinmura K, Yamamoto T, Tamaki K, Katsumata Y, Sano M, Fukuda K (2012) Caloric restriction ameliorates myocardial ischemia/reperfusion injury by suppressing complement activation in a Sirt1-dependent manner. Circulation 126:A12784

    Google Scholar 

  70. Shinmura K, Tamaki K, Sano M, Nakashima-Kamimura N, Wolf AM, Amo T, Ohta S, Katsumata Y, Fukuda K, Ishiwata K, Suematsu M, Adachi T (2011) Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 109(4):396–406

    Article  PubMed  CAS  Google Scholar 

  71. Shinmura K, Tamaki K (2011) Essential role of nitric oxide synthase in caloric restriction-induced cardioprotection. Circulation 124:A11579

    Google Scholar 

  72. Stein PK, Soare A, Meyer TE, Cangemi R, Holloszy JO, Fontana L (2012) Caloric restriction may reverse age-related autonomic decline in humans. Aging Cell 11(4):644–650

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Sloan C, Tuinei J, Nemetz K, Frandsen J, Soto J, Wride N, Sempokuya T, Alegria L, Bugger H, Abel ED (2011) Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice. Diabetes 60(5):1424–1434

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. AlGhatrif M, Watts VL, Niu X, Halushka M, Miller KL, Vandegaer K, Bedja D, Fox-Talbot K, Bielawska A, Gabrielson KL, Barouch LA (2013) Beneficial cardiac effects of caloric restriction are lost with age in a murine model of obesity. J Cardiovasc Transl Res 6(3):436–445

    Article  PubMed  Google Scholar 

  75. Takatsu M, Nakashima C, Takahashi K, Murase T, Hattori T, Ito H, Murohara T, Nagata K (2013) Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome. Hypertension 62(5):957–965

    Article  PubMed  CAS  Google Scholar 

  76. van der Meer RW, Rijzewijk LJ, Diamant M, Hammer S, Schar M, Bax JJ, Smit JW, Romijn JA, de Roos A, Lamb HJ (2008) The ageing male heart: myocardial triglyceride content as independent predictor of diastolic function. Eur Heart J 29(12):1516–1522

    Article  PubMed  CAS  Google Scholar 

  77. Yamamoto T, Shinmura K, Sano M, Fukuda K (2013) Protective role of cardiac Silent Information Regulator 1 against high fat diet-induced cardiac hypertrophy. Circulation 128:A14684

    Google Scholar 

  78. Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5(2):97–108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by JSPS KAKENHI Grant Number 22590814 (2014), the Keio Gijuku Academic Development Funds (2014), and the Vehicle Racing Commemorative Foundation (2014). There is no relationship between the author and industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Shinmura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shinmura, K. (2015). Nutritional Interventions for Cardiovascular Aging and Age-Related Cardiovascular Diseases. In: Yu, B. (eds) Nutrition, Exercise and Epigenetics: Ageing Interventions. Healthy Ageing and Longevity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14830-4_9

Download citation

Publish with us

Policies and ethics