Skip to main content

Hormonal Influence and Modulation in Aging

  • Chapter
  • First Online:
Nutrition, Exercise and Epigenetics: Ageing Interventions

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 2))

  • 2099 Accesses

Abstract

Hormones regulate physiological functions and maintain homeostasis in the body. In aging animals, the levels of many hormones decrease in the blood or target cells become insensitive to certain hormones, thereby causing aging-related disorders. For example, a reduction in the levels of growth hormone (GH) and its peripheral effector, insulin-like growth factor-1 (IGF-1 ), causes physical frailty due to loss of bone and lean muscle mass in humans. However, inhibition of the GH-IGF-1 axis by genetic manipulation promotes survival in a wide range of animals. Calorie restriction (CR), a nongenetic intervention that extends the lifespan of animals, also inhibits the GH-IGF-1 axis. That is the GH-IGF-1 paradox of aging. This chapter describes our current understanding of the signaling pathways that regulate aging and thus lifespan, particularly focusing on the GH-IGF-1 axis and its downstream signaling. Modulation of neuroendocrine systems by CR is also reviewed in terms of extension of lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudman D et al (1990) Effects of human growth hormone in men over 60 years old. New England J Med 323(1):1–6

    Article  CAS  Google Scholar 

  2. Shimokawa I et al (2008) Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells 26(5):427–435

    CAS  PubMed  Google Scholar 

  3. Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C Thomas Publisher, Springfield, IL

    Google Scholar 

  4. Cohn L et al (1993) Carpal tunnel syndrome and gynaecomastia during growth hormone treatment of elderly men with low circulating IGF-I concentrations. Clin Endocrinol 39(4):417–425

    Article  CAS  Google Scholar 

  5. Friedman DB, Johnson TE (1988) Three mutants that extend both mean and maximum life span of the Nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol 43(4):B102–B109

    Article  CAS  PubMed  Google Scholar 

  6. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382(6591):536–539

    Article  CAS  PubMed  Google Scholar 

  7. Kenyon C et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464

    Article  CAS  PubMed  Google Scholar 

  8. Kimura KD et al (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277(5328):942–946

    Article  CAS  PubMed  Google Scholar 

  9. Ogg S et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654):994–999

    Article  CAS  PubMed  Google Scholar 

  10. Brown-Borg HM et al (1996) Dwarf mice and the ageing process. Nature 384(6604):33

    Article  CAS  PubMed  Google Scholar 

  11. Steger RW, Bartke A, Cecim M (1993) Premature ageing in transgenic mice expressing different growth hormone genes. J Reprod Fertil Suppl 46:61–75

    CAS  PubMed  Google Scholar 

  12. Coschigano KT et al (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141(7):2608–2613

    CAS  PubMed  Google Scholar 

  13. Flurkey K et al (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Nat Acad Sci USA 98(12):6736–6741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Holzenberger M et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421(6919):182–187

    Article  CAS  PubMed  Google Scholar 

  15. Boldt HB, Conover CA (2007) Pregnancy-associated plasma protein-A (PAPP-A): a local regulator of IGF bioavailability through cleavage of IGFBPs. Growth Horm IGF Res 17(1):10–18

    Article  CAS  PubMed  Google Scholar 

  16. Conover CA, Bale LK (2007) Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6(5):727–729

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto K et al (1993) Growth retardation in rats whose growth hormone gene expression was suppressed by antisense RNA transgene. Mol Reprod Dev 36(1):53–58

    Article  CAS  PubMed  Google Scholar 

  18. Shimokawa I et al (2002) Life span extension by reduction in growth hormone-insulin-like growth factor-1 axis in a transgenic rat model. Am J Pathol 160(6):2259–2265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shimokawa I et al (2003) Life span extension by reduction of the growth hormone-insulin-like growth factor-1 axis: relation to caloric restriction. FASEB J 17(9):1108–1109

    CAS  PubMed  Google Scholar 

  20. Yamaza H et al (2004) A transgenic dwarf rat model as a tool for the study of calorie restriction and aging. Exp Gerontol 39(2):269–272

    Article  CAS  PubMed  Google Scholar 

  21. Yamaza H et al (2007) Involvement of insulin-like growth factor-1 in the effect of caloric restriction: regulation of plasma adiponectin and leptin. J Gerontol Ser A Biol Sci Med Sci 62(1):27–33

    Article  Google Scholar 

  22. Komatsu T et al (2011) Acute stress response modified by modest inhibition of growth hormone axis: a potential machinery of the anti-aging effect of calorie restriction. Mech Ageing Dev 132(3):103–109

    Article  CAS  PubMed  Google Scholar 

  23. Sonntag WE et al (2005) Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 146(7):2920–2932

    Article  CAS  PubMed  Google Scholar 

  24. Panici JA et al (2010) Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J 24(12):5073–5079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rojanathammanee L, Rakoczy S, Brown-Borg HM (2014) Growth hormone alters the glutathione s-transferase and mitochondrial thioredoxin systems in long-living ames dwarf mice. J Gerontol Ser A Biol Sci Med Sci 69(10):1199–1211

    Article  Google Scholar 

  26. Miskin R, Masos T (1997) Transgenic mice overexpressing urokinase-type plasminogen activator in the brain exhibit reduced food consumption, body weight and size, and increased longevity. J Gerontol Ser A Biol Sci Med Sci 52(2):B118–B124

    Article  CAS  Google Scholar 

  27. Schwartz MW et al (2000) Central nervous system control of food intake. Nature 404(6778):661–671

    CAS  PubMed  Google Scholar 

  28. Miskin R et al (2005) AlphaMUPA mice: a transgenic model for longevity induced by caloric restriction. Mech Ageing Dev 126(2):255–261

    Article  CAS  PubMed  Google Scholar 

  29. Potthoff MJ et al (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Nat Acad Sci USA 106(26):10853–10858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhang Y et al (2012) The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 1:e00065

    Article  PubMed Central  PubMed  Google Scholar 

  31. Gertler AA, Cohen HY (2013) SIRT6, a protein with many faces. Biogerontology 14(6):629–639

    Article  CAS  PubMed  Google Scholar 

  32. Michishita E et al (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mostoslavsky R et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329

    Article  CAS  PubMed  Google Scholar 

  34. Kanfi Y et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    Article  CAS  PubMed  Google Scholar 

  35. O’ Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653

    Article  PubMed  Google Scholar 

  36. Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317(5836):369–372

    Article  CAS  PubMed  Google Scholar 

  37. Selman C et al (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22(3):807–818

    Article  CAS  PubMed  Google Scholar 

  38. Nojima A et al (2013) Haploinsufficiency of akt1 prolongs the lifespan of mice. PLoS ONE 8(7):e69178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Selman C et al (2009) Ribosomal Protein S6 Kinase 1 signaling regulates mammalian life span. Science 326(5949):140–144

    Article  CAS  PubMed  Google Scholar 

  40. Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24(50):7410–7425

    Article  CAS  PubMed  Google Scholar 

  41. Kamei Y et al (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279(39):41114–41123

    Article  CAS  PubMed  Google Scholar 

  42. Chiba T et al (2009) Overexpression of FOXO1 in skeletal muscle does not alter longevity in mice. Mech Ageing Dev 130(7):420–428

    Article  CAS  PubMed  Google Scholar 

  43. Paik J-H et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128(2):309–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yamaza H et al (2010) FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell 9(3):372–382

    Article  CAS  PubMed  Google Scholar 

  45. Willcox BJ et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Nat Acad Sci USA 105(37):13987–13992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sainsbury A, Zhang L (2011) Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 1–24

    Google Scholar 

  47. Shimokawa I et al (2008) Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells 26(5):427–435

    CAS  PubMed  Google Scholar 

  48. Shimokawa I et al (2003) Effects of caloric restriction on gene expression in the arcuate nucleus. Neurobiol Aging 24(1):117–123

    Article  CAS  PubMed  Google Scholar 

  49. Komatsu T et al (2006) Effect of leptin on hypothalamic gene expression in calorie-restricted rats. J Gerontol Ser A Biol Sci Med Sci 61(9):890–898

    Article  Google Scholar 

  50. Han ES et al (1995) Hyperadrenocorticism and food restriction-induced life extension in the rat: evidence for divergent regulation of pituitary proopiomelanocortin RNA and adrenocorticotropic hormone biosynthesis. J Gerontol Ser A Biol Sci Med Sci 50(5):B288–B294

    Article  CAS  Google Scholar 

  51. Holehan AM, Merry BJ (1985) Lifetime breeding studies in fully fed and dietary restricted female CFY Sprague-Dawley rats 1. Effect of age, housing conditions and diet on fecundity. Mech Ageing Dev 33(1):19–28

    Article  CAS  PubMed  Google Scholar 

  52. Himms-Hagen J (1985) Food restriction increases torpor and improves brown adipose tissue thermogenesis in ob/ob mice. Am J Physiol 248(5 Pt 1):E531–E539

    CAS  PubMed  Google Scholar 

  53. Sabatino F et al (1991) Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J Gerontol 46(5):B171–B179

    Article  CAS  PubMed  Google Scholar 

  54. Schumacher B et al (2008) Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet 4(8):e1000161

    Article  PubMed Central  PubMed  Google Scholar 

  55. Michalkiewicz M et al (2003) Hypotension and reduced catecholamines in neuropeptide Y transgenic rats. Hypertension 41(5):1056–1062

    Article  CAS  PubMed  Google Scholar 

  56. Chiba T et al (2014) A key role for neuropeptide Y in lifespan extension and cancer suppression via dietary restriction. Sci Rep 4:4517

    Article  PubMed Central  PubMed  Google Scholar 

  57. Blüher M (2014) Adipokines—removing road blocks to obesity and diabetes therapy. Mol Metab 3(3):230–240

    Article  PubMed Central  PubMed  Google Scholar 

  58. Ahima RS et al (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382(6588):250–252

    Article  CAS  PubMed  Google Scholar 

  59. Berg AH et al (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7(8):947–953

    Article  CAS  PubMed  Google Scholar 

  60. Qiao L, Shao J (2006) SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 281(52):39915–39924

    Article  CAS  PubMed  Google Scholar 

  61. Hui X et al (2012) Adiponectin and cardiovascular health: an update. Br J Pharmacol 165(3):574–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Otabe S et al (2007) Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet. Am J Physiol Endocrinol Metab 293(1):E210–E218

    Article  CAS  PubMed  Google Scholar 

  63. Blüher S, Kratzsch J, Kiess W (2005) Insulin-like growth factor I, growth hormone and insulin in white adipose tissue. Best Pract Res Clin Endocrinol Metab 19(4):577–587

    Article  PubMed  Google Scholar 

  64. Minamino T et al (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15(9):1082–1087

    Article  CAS  PubMed  Google Scholar 

  65. Bogazzi F et al (2013) Growth hormone is necessary for the p53-mediated, obesity-induced insulin resistance in male C57BL/6 J x CBA mice. Endocrinology 154(11):4226–4236

    Article  CAS  PubMed  Google Scholar 

  66. Zhu M et al (2007) Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp Gerontol 42(8):733–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Picard F et al (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429(6993):771–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bruss MD et al (2010) Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 298:E108–E116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Liao C-Y et al (2011) Fat maintenance is a predictor of the murine lifespan response to dietary restriction. Aging Cell 10(4):629–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Shimokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shimokawa, I. (2015). Hormonal Influence and Modulation in Aging. In: Yu, B. (eds) Nutrition, Exercise and Epigenetics: Ageing Interventions. Healthy Ageing and Longevity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14830-4_4

Download citation

Publish with us

Policies and ethics