Skip to main content

Anti-inflammatory Action of Calorie Restriction Underlies the Retardation of Aging and Age-Related Diseases

  • Chapter
  • First Online:
Book cover Nutrition, Exercise and Epigenetics: Ageing Interventions

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 2))

Abstract

Calorie restriction (CR) is known to extend lifespan and has anti-oxidative properties that lead to physiological and biological resistance against diseases and stress. This chapter reviews the molecular mechanisms of CR’s anti-inflammatory actions during aging. The crux of CR’s ability to attenuate age-related chronic inflammation is related to its power to maintain redox status by modulating oxidative stress during aging. Here, for better molecular insights, key transcription factors such as FoxO, Nrf2, and PPARs induced by CR are described for their modulation of the age-related inflammation response. In addition, recent analyses by systems biology on chronic inflammation, age-related pro-inflammatory gene activation, and CR’s suppression produced evidence identifing various target genes, target molecules, and their networks. The wide implication of the proinflammatory process under pathophysiological conditions are further detailed in this chapter by including autophagic activity and the activation of the recently recognized inflammasome, a component of key innate immunological defenses and ER stress . This chapter summarizes the evidence that CR suppresses molecular inflammation through the proper maintenance of redox status, NF-κB signaling, inflammasome activation, ER stress, and insulin sensitivity, which in turn lead to the intervention of aging processes and age-related diseases.

Dae Hyun Kim, Eun Kyeong Lee and Min Hi Park contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu BP (1996) Aging and oxidative stress: modulation by dietary restriction. Free Radic Biol Med 21:651–668

    Article  PubMed  CAS  Google Scholar 

  2. Yu BP, Chung HY (2001) Stress resistance by caloric restriction for longevity. Ann NY Acad Sci 928:39–47

    Article  PubMed  CAS  Google Scholar 

  3. Yu BP, Yang R (1996) Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis. Ann NY Acad Sci 786:1–11

    Article  PubMed  CAS  Google Scholar 

  4. Bodamyali T, Stevens CR, Blake DR et al (2000) Reactive oxygen/nitrogen species and acute inflammation: a physiological process. In: Winyard PG, Blake DR, Evans CH (eds) Free radicals and inflammation. Birkha user Verlag, Basel, pp 11–16

    Chapter  Google Scholar 

  5. Chung HY, Cesari M, Anton S et al (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Aging Res Rev 8:18–30

    Article  CAS  Google Scholar 

  6. Zou Y, Kim DH, Jung KJ et al (2009) Lysophosphatidylcholine enhances oxidative stress via the 5-lipoxygenase pathway in rat aorta during aging. Rejuvenation Res 1:15–24

    Article  Google Scholar 

  7. Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: lessons from a small thiol. Ann NY Acad Sci 973:488–504

    Article  PubMed  CAS  Google Scholar 

  8. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    PubMed  CAS  Google Scholar 

  9. Kim HJ, Jung KJ, Yu BP et al (2002) Influence of aging and calorie restriction on MAPKs activity in rat kidney. Exp Gerontol 37:1041–1053

    Article  PubMed  CAS  Google Scholar 

  10. Sen CK (2000) Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 36:1–30

    Article  PubMed  CAS  Google Scholar 

  11. Mustelin T, Vang T, Bottini N (2005) Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5:43–57

    Article  PubMed  CAS  Google Scholar 

  12. Jung KJ, Lee EK, Yu BP et al (2009) Significance of protein tyrosine kinase/protein tyrosine phosphatase balance in the regulation of NF-kappaB signaling in the inflammatory process and aging. Free Radic Biol Med 47:983–991

    Article  PubMed  CAS  Google Scholar 

  13. Park D, Lee EK, Jang EJ et al (2013) Identification of the dichotomous role of age-related LCK in calorie restriction revealed by integrative analysis of cDNA microarray and interactome. Age 35:1045–1060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Jung KJ, Kim DH, Lee EK et al (2013) Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-κB in aged rat kidney. Free Radic Biol Med 61C:206–217

    Article  CAS  Google Scholar 

  15. Kumar A, Takada Y, Boriek AM et al (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82:434–448

    Article  PubMed  CAS  Google Scholar 

  16. Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23

    Article  PubMed  CAS  Google Scholar 

  17. Kim CH, Zou Y, Kim DH et al (2006) Proteomic analysis of nitrated and 4-hydroxy-2-nonenal-modified serum proteins during aging. J Gerontol A Biol Sci Med Sci 61:332–338

    Article  PubMed  Google Scholar 

  18. Kim JM, Lee EK, Kim DH et al (2010) Kaempferol modulates pro-inflammatory NF-kappaB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age 32:197–208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Kim JM, Heo HS, Ha YM et al (2012) Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. Age 34:11–25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Kim DH, Kim JY, Yu BP et al (2008) The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology 9:33–47

    Article  PubMed  CAS  Google Scholar 

  21. Park DU, Kim CH, Hong SE et al (2003) AgingDB: A database for oxidative stress and calorie restriction in the study of aging. J Am Aging Assoc 26:11–17

    PubMed Central  PubMed  Google Scholar 

  22. Chung HY, Kim HJ, Kim KW et al (2002) Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech 59:264–272

    Article  PubMed  CAS  Google Scholar 

  23. Chung HY, Cesari M, Anton S et al (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Shishodia S, Aggarwal BB (2004) Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-kappaB by suppressing activation of IkappaBalpha kinase in human non-small cell lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res 64:5004–5012

    Article  PubMed  CAS  Google Scholar 

  25. Henkel T, Machleidt T, Alkalay I et al (1993) Rapid proteolysis of IkappaB-alphaαis necessary for activation of transcription factor NF-kappaB. Nature 365:182–185

    Article  PubMed  CAS  Google Scholar 

  26. Yu BP (2005) Calorie restriction as a potent anti-aging intervention: suppression of oxidative stress. In: Rattan Suresh (ed) Aging Intervention and Therapies. World Scientific Publishing, Singapore, pp 193–217

    Chapter  Google Scholar 

  27. Demetrius L (2005) Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans. EMBO Rep 6:39–44

    Article  CAS  Google Scholar 

  28. Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    Article  PubMed  CAS  Google Scholar 

  29. Morris BJ (2005) A forkhead in the road to longevity: the molecular basis of lifespan becomes clearer. J Hypertens 23:1285–1309

    Article  PubMed  CAS  Google Scholar 

  30. van der Heide LP, Hoekman MFM, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309

    Article  Google Scholar 

  31. Yamaza H, Komatsu T, Wakita S et al (2010) FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell 9:372–382

    Article  PubMed  CAS  Google Scholar 

  32. Kim DH, Park MH, Chung KW et al (2014) The essential role of FoxO6 phosphorylation in aging and calorie restriction. Age 36:9679

    Article  PubMed  CAS  Google Scholar 

  33. Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14:275–287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Yu BP, Chung HY (2006) The inflammatory process in aging. Rev Clin Gerontol 16:179–187

    Article  Google Scholar 

  35. Salminen A, Ojala J, Huuskonen J et al (2008) Interaction of aging-associated signaling cascades: inhibition of NF-kB signaling by longevity factors FoxOs and SIRT1. Cell Mol Life Sci 65:1049–1058

    Article  PubMed  CAS  Google Scholar 

  36. Van der Horst A, Tertoolen LG, de Vries-Smits LM et al (2004) FoxO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2 (SIRT1). J Biol Chem 279:28873–28879

    Article  PubMed  CAS  Google Scholar 

  37. Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    Article  PubMed  CAS  Google Scholar 

  38. Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280:20589–20595

    Article  PubMed  CAS  Google Scholar 

  39. Lewis KN, Mele J, Hayes JD et al (2010) Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol 50:829–843

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Chen XL, Varner SE, Rao AS et al (2003) Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 278:703–711

    Article  PubMed  CAS  Google Scholar 

  41. Mercado N, Thimmulappa R, Thomas CM et al (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406:292–298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Hyun DH, Emerson SS, Jo DG et al (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci USA 103:19908–19912

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Wang N, Verna L, Chen NG et al (2002) Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J Bio Chem 277:34176–34181

    Article  CAS  Google Scholar 

  44. Barzilai N, Huffman DM, Muzumdar RH et al (2012) The critical role of metabolic pathways in aging. Diabetes 6:1315–1322

    Article  CAS  Google Scholar 

  45. de Cavanagh EM, Piotrkowski B, Fraga CG (2007) The interaction between the rennin-angiotensin system and peroxisome proliferator activated receptors: a hypothesis including the participation of mitochondria in aging. Front Biosci 12:1049–1062

    Article  PubMed  Google Scholar 

  46. Rahman M, Halade GV, Bhattacharya A et al (2009) The fat-1 transgene in mice increases antioxidant potential, reduces proinflammatory cytokine levels, and enhances PPAR-gamma and SIRT-1 expression on a calorie restricted diet. Oxid Med Cell Longev 2:307–316

    Article  PubMed Central  PubMed  Google Scholar 

  47. Qiao L, Lee B, Kinney B et al (2011) Energy intake and adiponectin gene expression. Am J Physiol Endocrinol Metab 300:E809–E816

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. de Magalhaes JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25:875–881

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  50. Zahn JM, Poosala S, Owen AB et al (2007) AGEMAP: a gene expression database for aging in mice. PLoS Genet 3:e201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Hong SE, Heo HS, Kim DH et al (2010) Revealing system-level correlations between aging and calorie restriction using a mouse transcriptome. Age 32:15–30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Wood SH, Craig T, Li Y et al (2013) Whole transcriptome sequencing of the aging rat brain reveals dynamic RNA changes in the dark matter of the genome. Age 35:763–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Dillman AA, Hauser DN, Gibbs JR et al (2013) mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci 16:499–506

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Park D, Lee EK, Jang EJ et al (2013) Identification of the dichotomous role of age-related LCK in calorie restriction revealed by integrative analysis of cDNA microarray and interactome. Age 35(4):1045–1060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  PubMed  CAS  Google Scholar 

  56. Wilson KP, Black JA, Thomson JA et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370:270–275

    Article  PubMed  CAS  Google Scholar 

  57. Kayagaki N, Warming S, Lamkanfi M et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    Article  PubMed  CAS  Google Scholar 

  58. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  PubMed  CAS  Google Scholar 

  60. Youm YH, Grant RW, McCabe LR et al (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18:519–532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Vasto S, Candore G, Balistreri CR et al (2007) Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 128:83–91

    Article  PubMed  CAS  Google Scholar 

  62. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121:2111–2117

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Strowig T, Henao-Mejia J, Elinav E et al (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  PubMed  CAS  Google Scholar 

  64. Vandanmagsar B, Youm YH, Ravussin A et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Med 17:179–188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nature Immunol 11:897–904

    Article  CAS  Google Scholar 

  67. Dinarello CA, Donath MY, Mandrup-Poulsen T (2010) Role of IL-1β in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 17:314–321

    PubMed  CAS  Google Scholar 

  68. Petrasek J, Bala S, Csak T et al (2012) IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 122:3476–3489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Bauer C, Duewell P, Mayer C et al (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59:1192–1199

    Article  PubMed  CAS  Google Scholar 

  70. Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  PubMed  CAS  Google Scholar 

  71. Jin C, Frayssinet P, Pelker R et al (2011) NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci USA 108:14867–14872

    Article  PubMed Central  PubMed  Google Scholar 

  72. Zitvogel L, Kepp O, Galluzzi L et al (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13:343–351

    Article  PubMed  CAS  Google Scholar 

  73. Chung KW, Kim DH, Park MH et al (2013) Recent advances in calorie restriction research on aging. Exp Gerontol 48:1049–1053

    Article  PubMed  CAS  Google Scholar 

  74. Wen H, Gris D, Lei Y et al (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Shi CS, Shenderov K, Huang NN et al (2012) Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Zhang G, Li Q, Wang L et al (2011) The effects of inflammation on lipid accumulation in the kidneys of children with primary nephrotic syndrome. Inflammation 34:645–652

    Article  PubMed  CAS  Google Scholar 

  77. Brown MS, Ye J, Rawson RB et al (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391–398

    Article  PubMed  CAS  Google Scholar 

  78. Zhao L, Zou X, Feng Z et al (2014) Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats. Exp Gerontol 56:3–12

    Article  PubMed  CAS  Google Scholar 

  79. Philippe J, Ruiz J (2014). The clinical path concept or the difficult revolution of chronic diseases management. Rev Med Suisse 10:1227–1228

    Google Scholar 

  80. Michaud M, Balardy L, Moulis G et al (2013) Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 14:877–882

    Article  PubMed  Google Scholar 

  81. Mccann SM, Mastronardi C, De Laurentiis A et al (2005) The nitric oxide theory of aging revisited. Ann NY Acad Sci 1057:64–84

    Article  PubMed  CAS  Google Scholar 

  82. Ahima RS (2009) Connecting obesity, aging and diabetes. Nat Med 15:996–997

    Article  PubMed  CAS  Google Scholar 

  83. Eckardt K, Taube A, Eckel J (2011) Obesity-associated insulin resistance in skeletal muscle: role of lipid accumulation and physical inactivity. Rev Endocr Metab Disord 12:163–172

    Article  PubMed  CAS  Google Scholar 

  84. Yuan M, Konstantopoulos N, Lee J et al (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677

    Article  PubMed  CAS  Google Scholar 

  85. Cai D, Yuan M, Frantz DF et al (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183–190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Wolf G (2006) Calorie restriction increases life span: a molecular mechanism. Nutr Rev 64:89–92

    Article  PubMed  Google Scholar 

  87. Mascarucci P, Taub D, Saccani S et al (2002) Cytokine responses in young and old rhesus monkeys: effect of caloric restriction. J Interferon Cytokine Res 22:565–571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Young Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, D.H. et al. (2015). Anti-inflammatory Action of Calorie Restriction Underlies the Retardation of Aging and Age-Related Diseases. In: Yu, B. (eds) Nutrition, Exercise and Epigenetics: Ageing Interventions. Healthy Ageing and Longevity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14830-4_3

Download citation

Publish with us

Policies and ethics