Skip to main content

Dietary Restriction, Dietary Design and the Epigenetics of Aging and Longevity

  • Chapter
  • First Online:
Book cover Nutrition, Exercise and Epigenetics: Ageing Interventions

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 2))

  • 2156 Accesses

Abstract

As the mechanisms of long-term control of gene expression, it would seem that the various aspects of epigenetics would be important for, even determinants of, aging and longevity . Yet few data connect these directly. Epigenetics changes with age; in particular DNA methylation and histone acetylation have been well studied. For humans, a DNA methylation based “epigenetic clock ” has been developed to track the apparent chronological age of people, tissues, stem cells and cancers. Histone acetylation is important for maintaining cognitive memory in animals and restoration of histone acetylation improves memory in older animals. Several aspects of diet and metabolism affect epigenetics. These include the effects of glucose on histone acetylation and methylation, the effects of acetyl-coenzyme A and energy metabolism on histone acetylation, natural histone deacetylase inhibitors found in foods such as broccoli and garlic affecting histone acetylation and DNA methylation, and the effects of methyl metabolism and nutrients such as folate on DNA and histone methylation. Models of greatly extended longevity should be studied for epigenetics to test if epigenetics are preserved when longevity is extended and then studies to manipulate epigenetics in these models should be done to measure their effects on longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl group

AcCoA:

Acetyl-coenzyme A

AGE:

Advanced glycation end products

AMPK:

AMP activated protein kinase

BHB:

D-beta-hydroxybutyrate

CR:

Calorie restriction

DCCT:

Diabetes Control and Complications Trial

DIM:

Diindolylmethane

DNMT:

DNA methyltransferase

DR:

Dietary restriction

EDIC:

Epidemiology of Diabetes Intervention and Complications

ERV:

Endogenous retrovirus

H3K4:

H3 histone tail lysine 4

H3K9:

H3 histone tail lysine 9

H4K12:

H4 histone tail lysine 12

HAT:

Histone acetyltransferase

HbA1c:

Glycated hemoglobin used as a measure of long-term average blood glucose levels

HDAC:

Histone deacetylase

HDACI:

Histone deacetylase inhibitor

HERV-K:

Human endogenous retrovirus virus K

HMT:

Histone methyltransferase

IAP:

Intracisternal A particle

iPSC:

Induced pluripotent stem cell

L1:

LINE1

LINE1:

Long interspersed nuclear element 1

L1Md:

An L1 sequence of mice

LSD1:

Lysine-specific demethylase 1

LTR:

Long terminal repeat

MS-275:

Entinostat (an HDACI)

MuERV:

Murine endogenous retrovirus

NFkB:

Nuclear factor kappa-light chain enhancer of activated B cells

p65:

Transcription factor p65 encoded by the RELA gene

RAGE:

Receptor for advanced glycation end products

RTG:

Yeast genes important in communication between the mitochondria and nucleus

SAH:

S-adenosylhomocysteine

SAHA:

Suberoylanilide hydroxamic acid

SAM:

S-adenosylmethionine

Set7:

Enzyme that methylates lysine residues (e.g. on histones)

TCA:

Tricarboxylic acid (cycle) or Krebs cycle

References

  1. Cooney CA (1993) Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev Aging 57(4):261–273

    Google Scholar 

  2. Issa JP (2014) Aging and epigenetic drift: a vicious cycle. J Clin Invest 124(1):24–29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294–297

    Article  PubMed  CAS  Google Scholar 

  4. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609.

    Google Scholar 

  5. Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189

    Google Scholar 

  6. Ayyadevara S, Alla R, Thaden JJ, Reis RJS (2008) Remarkable longevity and stress resistance of nematode PI3 K-null mutants. Aging Cell 7(1):13–22

    Article  PubMed  CAS  Google Scholar 

  7. Weindruch R (1996) The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol Pathol 24(6):742–745

    Google Scholar 

  8. Spindler SR (2010) Caloric restriction: from soup to nuts. Ageing Res Rev 9(3):324–353

    Article  PubMed  CAS  Google Scholar 

  9. Lombard DB, Miller RA (2014) Aging, disease, and longevity in mice. Ann Rev Gerontol Geriatr 34:93–138

    Google Scholar 

  10. Vera E, de Jesus BB, Foronda M, Flores JM, Blasco MA (2013) Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS One 8(1):e53760

    Google Scholar 

  11. Cooney CA (2007) Epigenetics—DNA-based mirror of our environment? Dis Markers 23(1–2):121–137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Cooney CA (2010) Drugs and supplements that may slow aging of the epigenome. Drug Discov Today 7:57–64

    Google Scholar 

  13. Cooper ME, El-Osta A (2010) Epigenetics mechanisms and implications for diabetic complications. Circ Res 107(12):1403–1413

    Article  PubMed  CAS  Google Scholar 

  14. Cooney CA, Gilbert KM (2012) Toxicology, epigenetics, and autoimmunity. In: Sahu SC (ed) Toxicology and Epigenetics, John Wiley & Sons, Ltd., Chichester, UK, pp. 241–260

    Google Scholar 

  15. Gerhäuser C (2012) Cancer cell metabolism, epigenetics and the potential influence of dietary components–a perspective. Biomed Res 23:1–21

    Google Scholar 

  16. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  PubMed  CAS  Google Scholar 

  17. Ooi SKT, O’Donnell AH, Bestor TH (2009) Mammalian cytosine methylation at a glance. J Cell Sci 122(16):2787–2791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc Natl Acad Sci USA 103(46):17308–17312

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav R 33(4):593–600

    Article  Google Scholar 

  20. Li CCY, Cropley JE, Cowley MJ, Preiss T, Martin DIK, Suter CM (2011) A sustained dietary change increases epigenetic variation in isogenic mice. Plos Genet. 7(4):e1001380

    Google Scholar 

  21. Weaver ICG, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ et al (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25(47):11045–11054

    Article  PubMed  CAS  Google Scholar 

  22. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA et al (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118):448–452

    Article  PubMed  CAS  Google Scholar 

  23. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos T R Soc B 368(1609):20110330

    Google Scholar 

  24. Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Bio 13(5):297–311

    CAS  Google Scholar 

  25. Cooney CA (2008) Cancer and aging: the epigenetic connection. In: Tollefsbol T, (ed) Cancer epigenetics, CRC Press, Boca Raton, pp 303–316

    Google Scholar 

  26. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Wallace DC, Fan WW, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol Mech 5:297–348

    Article  CAS  Google Scholar 

  28. Friis RMN, Glaves JP, Huan T, Li L, Sykes BD, Schultz MC (2014) Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep 7(2):565–574

    Article  PubMed  CAS  Google Scholar 

  29. Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50(3):213–221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of HTERT expression in human breast cancer cell lines. PLoS One 5(7):e11457

    Google Scholar 

  31. Meeran SM, Patel SN, Li YY, Shukla S, Tollefsbol TO (2012) Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One 7(5):e37748

    Google Scholar 

  32. Clarke JD, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E (2011) Comparison of isothiocyanate metabolite levels and histone deacetylase activity in human subjects consuming broccoli sprouts or broccoli supplement. J Agr Food Chem 59(20):10955–10963

    Article  CAS  Google Scholar 

  33. Ernst IMA, Schuemann C, Wagner AE, Rimbach G (2011) 3,3′-Diindolylmethane but not indole-3-carbinol activates Nrf2 and induces Nrf2 target gene expression in cultured murine fibroblasts. Free Radical Res 45(8):941–944

    Google Scholar 

  34. Kurokawa R, Rosenfeld MG, Glass CK (2009) Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biology 6(3):233–236

    Google Scholar 

  35. Collins LJ, Schonfeld B, Chen XS (2011) The epigenetics of non-coding RNA. In: Tollefsbol T. (ed) Handbook of epigenetics: the new molecular and medical genetics. London Academic, pp 49–61

    Google Scholar 

  36. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338(6113):1435–1439

    Article  PubMed  CAS  Google Scholar 

  37. Gerhauser C (2012) Cancer cell metabolism, epigenetics and the potential influence of dietary components—a perspective. Biomed Res India 23:69–89

    Google Scholar 

  38. Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Guerrero N, Boffelli D et al (2013) Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction. Aging 5(2):130–141

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Vanyushin BF, Nemirovsky LE, Klimenko VV, Vasiliev VK, Belozersky AN (1973) The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia 19(3):138–152

    Article  PubMed  CAS  Google Scholar 

  40. Vanyushin BF, Romanenko EB (1979) Changes in DNA methylation in rats during ontogenesis and under the influence of hydrocortisone. Biochem Moscow 44(1):65–70

    Google Scholar 

  41. Singhal RP, Mays-Hoopes LL, Eichhorn GL (1987) DNA methylation in aging of mice. Mech Ageing Dev 41(3):199–210

    Article  PubMed  CAS  Google Scholar 

  42. Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262(21):9948–9951

    PubMed  CAS  Google Scholar 

  43. Reis RJS, Goldstein S (1982) Variability of DNA methylation patterns during serial passage of human—diploid fibroblasts. P Natl Acad Sci-Biol 79(13):3949–3953

    Article  CAS  Google Scholar 

  44. Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220(4601):1054–1057

    Article  Google Scholar 

  45. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P et al (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43(4):985–991

    Article  PubMed  CAS  Google Scholar 

  46. Kwabi-Addo B, Chung WB, Shen L, Ittmann M, Wheeler T, Jelinek J et al (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13(13):3796–3802

    Article  PubMed  CAS  Google Scholar 

  47. Maegawa S, Hinkal G, Kim HS, Shen LL, Zhang L, Zhang JX et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332–340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Google Scholar 

  49. Jones PA (1999) The DNA methylation paradox. Trends Genet 15(1):34–37

    Article  PubMed  CAS  Google Scholar 

  50. Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Ann Rev Pharmacol 45:629–656

    Google Scholar 

  51. Fernandez AF, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H et al (2012) A DNA methylation fingerprint of 1628 human samples. Genome Res 22(2):407–419

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Jeffries MA, Dozmorov M, Tang YH, Merrill JT, Wren JD, Sawalha AH (2011) Genome-wide DNA methylation patterns in CD4(+) T cells from patients with systemic lupus erythematosus. Epigenetics 6(5):593–601

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Russanova VR, Hirai TH, Howard BH (2004) Semirandom sampling to detect differentiation-related and age-related epigenome remodeling. J Gerontol Biol 59(12):1221–1233

    Article  Google Scholar 

  54. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756

    Article  PubMed  CAS  Google Scholar 

  55. Bahari-Javan S, Sananbenesi F, Fischer A (2014) Histone-acetylation: a link between Alzheimer’s disease and post-traumatic stress disorder? Front Neurosci 8:160

    Article  PubMed Central  PubMed  Google Scholar 

  56. Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD et al (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35(4):870–880

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235

    Google Scholar 

  58. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron. 53(6):857–869

    Google Scholar 

  59. Montalvo-Ortiz JL, Keegan J, Gallardo C, Gerst N, Tetsuka K, Tucker C et al (2014) HDAC inhibitors restore the capacity of aged mice to respond to haloperidol through modulation of histone acetylation. Neuropsychopharmacology 39(6):1469–1478

    Article  PubMed  CAS  Google Scholar 

  60. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP et al (2008 ) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50

    Google Scholar 

  61. Maeda H, Gleiser CA, Masoro EJ, Murata I, Mcmahan CA, Yu BP (1985) Nutritional influences on aging of Fischer 344 rats. II Pathology. J Gerontol 40(6):671–688

    Article  PubMed  CAS  Google Scholar 

  62. Fontana L (2009) Neuroendocrine factors in the regulation of inflammation: excessive adiposity and calorie restriction. Exp Gerontol 44(1–2):41–45

    Google Scholar 

  63. Weindruch R, Albanes D, Kritchevsky D (1991) The role of calories and caloric restriction in carcinogenesis. Hematol Oncol Clin N 5(1):79–89

    CAS  Google Scholar 

  64. Fu PP, Dooley KL, Vontungeln LS, Bucci T, Hart RW, Kadlubar FF (1994) Caloric restriction profoundly inhibits liver-tumor formation after initiation by 6-nitrochrysene in male-mice. Carcinogenesis 15(2):159–161

    Article  PubMed  CAS  Google Scholar 

  65. Hart RW, Turturro A (1997) Dietary restrictions and cancer. Environ Health Persp 105:989–992

    Article  CAS  Google Scholar 

  66. Dhahbi JM, Kim HJ, Mote PL, Beaver RJ, Spindler SR (2004) Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci USA 101(15):5524–5529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Fontana L, Klein S, Holloszy JO (2010) Effects of long-term calorie restriction and endurance exercise on glucose tolerance, insulin action, and adipokine production. Age 32(1):97–108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Soare A, Cangemi R, Omodei D, Holloszy JO, Fontana L (2011) Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging (Albany NY) 3(4):374–379

    Google Scholar 

  69. Ingram DK, Roth GS (2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 46(2–3):148–154

    Google Scholar 

  70. Carrillo AE, Flouris AD (2011) Caloric restriction and longevity: Effects of reduced body temperature. Ageing Res Rev 10(1):153–162

    Article  PubMed  Google Scholar 

  71. Masoro EJ, Mccarter RJM, Katz MS, Mcmahan CA (1992) Dietary restriction alters characteristics of glucose fuel use. J Gerontol 47(6):B202–B208

    Article  PubMed  CAS  Google Scholar 

  72. Sell C (2003) Caloric restriction and insulin-like growth factors in aging and cancer. Horm Metab Res 35(11–12):705–711

    Google Scholar 

  73. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PWL, Thomas EL et al (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11(6):453–465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Dacks PA, Moreno CL, Kim ES, Marcellino BK, Mobbs CV (2013) Role of the hypothalamus in mediating protective effects of dietary restriction during aging. Front Neuroendocrinol 34(2):95–106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Shamoon H, Duffy H, Fleischer N, Engel S, Saenger P, Strelzyn M et al (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes-mellitus. New Engl J Med 329(14):977–986

    Article  Google Scholar 

  76. Shamoon H, Duffy H, Dahms W, Mayer L, Brillion D, Lackaye M et al (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. New Engl J Med 342(6):381–389

    Article  Google Scholar 

  77. Steffes MW, Chavers BM, Molitch ME, Cleary PA, Lachin JM, Genuth S et al (2003) Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy—the epidemiology of diabetes interventions and complications (EDIC) study. J Am Med Assoc 290(16):2159–2167

    Article  CAS  Google Scholar 

  78. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. New Engl J Med 359(15):1577–1589

    Article  PubMed  CAS  Google Scholar 

  79. Genuth S, Lipps J, Lorenzi G, Nathan DM, Davis MD, Lachin JM et al (2002) Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. J Am Med Assoc 287(19):2563–2569

    Article  Google Scholar 

  80. Nathan DM, Cleary PA, Backlund JYC, Genuth SM, Lachin JM, Orchard TJ et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New Engl J Med 353(25):2643–2653

    Article  PubMed  Google Scholar 

  81. Roy S, Sala R, Cagliero E, Lorenzi M (1990) Overexpression of fibronectin induced by diabetes or high glucose—phenomenon with a memory. Proc Natl Acad Sci USA 87(1):404–408

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. El-Osta A, Brasacchio D, Yao DC, Pocai A, Jones PL, Roeder RG et al (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205(10):2409–2417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5):1229–1236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279(17):18091–18097

    Article  PubMed  CAS  Google Scholar 

  85. Miao F, Chen Z, Genuth S, Paterson A, Zhang LX, Wu XW et al (2014) Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63(5):1748–1762

    Article  PubMed  CAS  Google Scholar 

  86. Chilelli NC, Burlina S, Lapolla A (2013) AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a “glycoxidation-centric” point of view. Nutr Metab Cardiovas 23(10):913–919

    Article  CAS  Google Scholar 

  87. Kim TH, Petrou S, Reid CA (2014) Low glycaemic index diet reduces seizure susceptibility in a syndrome—specific mouse model of generalized epilepsy. Epilepsy Res 108(1):139–143

    Article  PubMed  CAS  Google Scholar 

  88. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    PubMed  CAS  Google Scholar 

  89. Xie CH, Naito A, Mizumachi T, Evans TT, Douglas MG, Cooney CA et al (2007) Mitochondrial regulation of cancer associated nuclear DNA methylation. Biochem Bioph Res Co 364(3):656–661

    Article  CAS  Google Scholar 

  90. Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription. Cell Metab 12(4):321–327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816

    Article  PubMed  CAS  Google Scholar 

  92. Salminen A, Kaarniranta K, Hiltunen M, Kauppinen A (2014) Krebs cycle dysfunction shapes epigenetic landscape of chromatin: Novel insights into mitochondrial regulation of aging process. Cell Signal 26(7):1598–1603

    Article  PubMed  CAS  Google Scholar 

  93. Shimazu T, Hirschey MD, Newman J, He WJ, Shirakawa K, Le Moan N et al (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339(6116):211–214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Myzak MC, Tong P, Dashwood WM, Dashwood RH, Ho E (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232(2):227–234

    CAS  Google Scholar 

  95. Wong CP, Hsu A, Buchanan A, Palomera-Sanchez Z, Beaver LM, Houseman EA, et al (2014) Effects of sulforaphane and 3,3′-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS One 9(1):e86787

    Google Scholar 

  96. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in A(vy)/a mice. FASEB J 12(11):949–957

    PubMed  CAS  Google Scholar 

  97. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8):2393S–2400S

    PubMed  CAS  Google Scholar 

  98. Eilertsen KJ, Floyd ZE, Gimble JM (2008) The epigenetics of adult (somatic) stem cells. Crit Rev Eukar Gene 18(3):189–206

    Article  CAS  Google Scholar 

  99. Yoo J, Medina-Franco JL (2012) Trimethylaurintricarboxylic acid inhibits human DNA methyltransferase 1: insights from enzymatic and molecular modeling studies. J Mole Model 18(4):1583–1589

    Google Scholar 

  100. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hines RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275(38):29318–29323

    Article  PubMed  CAS  Google Scholar 

  101. Jacobs SA, Harp JM, Devarakonda S, Kim Y, Rastinejad F, Khorasanizadeh S (2002) The active site of the SET domain is constructed on a knot. Nat Struct Biol 9:833–838

    PubMed  CAS  Google Scholar 

  102. Cohen HM, Griffiths AD, Tawfik DS, Loakes D (2005) Determinants of cofactor binding to DNA methyltransferases: insights from a systematic series of structural variants of S-adenosylhomocysteine. Org Biomol Chem 3(1):152–161

    Article  PubMed  CAS  Google Scholar 

  103. Chen NC, Yang F, Capecci LM, Gu ZY, Schafer AI, Durante W et al (2010) Regulation of homocysteine metabolism and methylation in human and mouse tissues. Faseb J 24(8):2804–2817

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Augspurger NR, Scherer CS, Garrow TA, Baker DH (2005) Dietary S-methylmethionine, a component of foods, has choline-sparing activity in chickens. J Nut 135(7):1712–1717

    CAS  Google Scholar 

  105. Cooney CA (2006) Maternal nutrition: nutrients and control of expression. In: Kaput J, Rodriguez RL (ed) Nutrigenomics: concepts and technologies. Wiley, Hoboken pp 219–254

    Google Scholar 

  106. Scherb J, Kreissl J, Haupt S, Schieberle P (2009) Quantitation of S-methylmethionine in raw vegetables and green malt by a stable isotope dilution assay using LC-MS/MS: comparison with dimethyl sulfide formation after heat treatment. J Agr Food Chem 57(19):9091–9096

    Article  CAS  Google Scholar 

  107. Cooney CA (2009) Nutrients, epigenetics, and embryonic development. In: Choi SW, Friso S (ed) Nutrients and Epigenetics, CRC Press, Boca Raton pp 155–174

    Google Scholar 

  108. Millian NS, Garrow TA (1998) Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch Biochem Biophys 356(1):93–98

    Article  PubMed  CAS  Google Scholar 

  109. Uthus EO, Brown-Borg HM (2006) Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech Ageing Dev 127(5):444–450

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20(2):116–117

    Article  PubMed  CAS  Google Scholar 

  111. Perl A, Fernandez D, Telarico T, Phillips PE (2010) Endogenous retroviral pathogenesis in lupus. Curr Opin Rheumatol 22(5):483–492

    Article  PubMed  CAS  Google Scholar 

  112. Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA 5(101):14572–14579

    Article  Google Scholar 

  113. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318

    Article  PubMed  CAS  Google Scholar 

  114. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KVK et al (2003) Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA 100(5):2538–2543

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Druker R, Bruxner TJ, Lehrbach NJ, Whitelaw E (2004) Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Res 32(19):5800–5808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Romanish MT, Cohen CJ, Mager DL (2010) Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 20(4):246–253

    Article  PubMed  CAS  Google Scholar 

  117. Gaudet F, Rideout WM, Meissner A, Dausman J, Leonhardt H, Jaenisch R (2004) Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cell Biol 24(4):1640–1648

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Schulz WA, Steinhoff C, Florl AR (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol 310:211–250

    CAS  Google Scholar 

  119. Reiss D, Zhang Y, Rouhi A, Reuter M, Mager DL (2010) Variable DNA methylation of transposable elements the case study of mouse early transposons. Epigenetics 5(1):68–79

    Article  PubMed  CAS  Google Scholar 

  120. Cherkasova E, Malinzak E, Rao S, Takahashi Y, Senchenko VN, Kudryavtseva AV et al (2011) Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene 30(47):4697–4706

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J et al (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55(2):277–290

    Article  PubMed  CAS  Google Scholar 

  122. Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS (2011) Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 6(3):355–367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Rodic N, Burns KH (2013) Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS Genetics 9(3):e1003402

    Google Scholar 

  124. Patnala R, Lee SH, Dahlstrom JE, Ohms S, Chen L, Dheen ST et al (2014) Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells. Breast Cancer Res Treat 143(2):239–253

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Balada E, Vilardell-Tarres M, Ordi-Ros J (2010) Implication of human endogenous retroviruses in the development of autoimmune diseases. Int Rev Immunol 29(4):351–370

    Article  PubMed  CAS  Google Scholar 

  126. Baudino L, Yoshinobu K, Morito N, Santiago-Raber ML, Izui S (2010) Role of endogenous retroviruses in murine SLE. Autoimmun Rev 10(1):27–34

    Article  PubMed  CAS  Google Scholar 

  127. Gilbert KM, Nelson AR, Cooney CA, Reisfeld B, Blossom SJ (2012) Epigenetic alterations may regulate temporary reversal of CD4(+) T Cell activation caused by trichloroethylene exposure. Toxicol Sci 127(1):169–178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Mayes-Hoopes L, Chao W, Butcher HC, Huang RCC (1986) Decreased methylation of the major mouse long interspersed repeated DNA during aging and in myeloma cells. Dev Genet 7(2):65–73

    Article  Google Scholar 

  129. St Laurent G, Hammell N, McCaffrey TA (2010) A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 131(5):299–305

    Google Scholar 

  130. Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P (2010) Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 38(12):3909–3922

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, et al (2014) Present and future of anti- ageing epigenetic diets. Mech Ageing Dev 136:101–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Cooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Cooney, C.A. (2014). Dietary Restriction, Dietary Design and the Epigenetics of Aging and Longevity. In: Yu, B. (eds) Nutrition, Exercise and Epigenetics: Ageing Interventions. Healthy Ageing and Longevity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14830-4_2

Download citation

Publish with us

Policies and ethics