Skip to main content

Calorie Restriction Mimetics: Progress and Potential

  • Chapter
  • First Online:
Nutrition, Exercise and Epigenetics: Ageing Interventions

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 2))

Abstract

Much has been written in recent years on the emerging field of calorie restriction mimetics (CRM), which appears to be the most efficient strategy for translating the huge body of research on the beneficial health and longevity promoting effects of actual calorie restriction (CR) into practice. While the latter has been shown to maintain, health, vitality, and function, as well as increase lifespan in many animal species, controversy still exists as to its relevance, particularly to primates/humans. While this review will assume enough consensus to at least warrant interest in obtaining the benefits suggested by CR, it will additionally weigh the evidence that CRMs can replicate some, if not most, of the same positive biological effects, and attempt to offer as objective an evaluation as possible of the current status of CRMs, and the best opportunities to extend this strategy to human applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lane MA, Ingram DK, Roth GS (1998) 2-deoxy-D-glucose feeding in rats mimics physiological effects of calorie restriction. J Anti-Aging Med 1:327–337

    CAS  Google Scholar 

  2. Wick AN, Drury DR, Nakada HI (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 224:963–969

    PubMed  CAS  Google Scholar 

  3. Ingram DK, Roth GS (2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 46:148–155

    PubMed  CAS  Google Scholar 

  4. Ingram DK, Roth GS (In press) Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev, Dec 19. pii: S1568-1637(14)00127-5. doi: 10.1016/j.arr.2014.11.005. [Epub ahead of print]

  5. Roth GS (2005) The truth about aging, can we really live longer and healthier?. Windstorm Creative, Port Orchard

    Google Scholar 

  6. Stipp D (2010) The youth pill. Penguin Books, London

    Google Scholar 

  7. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys Science 328:321–326

    Google Scholar 

  8. Chung KW, Kim DH, Park MH, Choi YJ, Kim ND, Lee J, Yu BP, Chung HY (2013) Recent advances in calorie restriction research on aging. Exp Gerontol 48:1049–1053

    PubMed  CAS  Google Scholar 

  9. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    PubMed  CAS  Google Scholar 

  10. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E, Pennington CALERIE Team (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548

    Google Scholar 

  11. Dirks AJ, Leeuwenburgh C (2006) Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 127:1–7

    PubMed  Google Scholar 

  12. Phelan JP, Austad SN (1989) Natural selection, dietary restriction, and extended longevity. Growth Dev Aging 53:4–6

    PubMed  CAS  Google Scholar 

  13. Shanley DP, Kirkwood TB (2006) Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontology 7(3):165–168

    Google Scholar 

  14. Selman C (2014) Dietary restriction and the pursuit of effective mimetics. Proc Nutr Soc 10:1–11

    Google Scholar 

  15. Harper JM, Leathers CW, Austad SN (2006) Does caloric restriction extend life in wild mice? Aging Cell 5:441–449

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Liao CY, Johnson TE, Nelson JF (2013) Genetic variation in responses to dietary restriction—an unbiased tool for hypothesis testing. Exp Gerontol 48:1025–1029

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Science 325:201–204

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 1(5):3557

    Google Scholar 

  19. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    PubMed  CAS  Google Scholar 

  20. Huffman DM (2010) Exercise as a calorie restriction mimetic: implications for improving healthy aging and longevity. Interdiscip Top Gerontol 37:157–174

    PubMed  Google Scholar 

  21. Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, de Cabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    PubMed  CAS  Google Scholar 

  22. Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 11:390–398

    PubMed Central  PubMed  Google Scholar 

  23. Strong R, Miller RA, Astle CM, Baur JA, de Cabo R, Fernandez E, Guo W, Javors M, Kirkland JL, Nelson JF, Sinclair DA, Teter B, Williams D, Zaveri N, Nadon NL, Harrison DE (2013) Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 68:6–16

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA (2014) Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13:273–282

    PubMed  CAS  Google Scholar 

  25. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66:191–201

    PubMed  Google Scholar 

  26. Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, Javors MA, Li X, Nadon NL, Nelson JF, Pletcher S, Salmon AB, Sharp ZD, Van Roekel S, Winkleman L, Strong R (2013) Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 17. doi:10.1111/acel.12194

  27. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7:641–650

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Mehta LH, Roth GS (2009) Caloric restriction and longevity: the science and the ascetic experience. Ann NY Acad Sci 1172:28–33

    PubMed  Google Scholar 

  30. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, Klein S, Holloszy JO, Washington University School of Medicine CALERIE Group (2006) Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr 84:1033–1042

    Google Scholar 

  31. Orentreich N, Matias JR, DeFelice A (1993) Low methionine ingestion by rats extends life span. J Nutr 123:269–274

    PubMed  CAS  Google Scholar 

  32. Sanchez-Roman I, Barja G (2013) Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 48:1030–1042

    PubMed  CAS  Google Scholar 

  33. Roth GS, Lane MA, Ingram DK (2005) Caloric restriction mimetics: the next phase. Ann NY Acad Sci 1057:365–371

    PubMed  CAS  Google Scholar 

  34. Derosa G, Maffioli P (2012) Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: a systematic review. Clin Ther 34:1221–1236

    PubMed  CAS  Google Scholar 

  35. Zhang W, Kim D, Philip E, Miyan Z, Barykina I, Schmidt B, Stein H (2013) The Gluco VIP study. A multinational, observational study to investigate the efficacy, safety and tolerability of acarbose as add-on or monotherapy in a range of patients: the Gluco VIP study. Clin Drug Investig 33:263–274

    PubMed  Google Scholar 

  36. Warburg O, Posener K, Negelein E (1930) Ueber den Stoffwechsel der Tumoren. Biochemische Zeitschrift 152:319–344

    Google Scholar 

  37. Pedersen PL (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211

    PubMed  CAS  Google Scholar 

  38. Gridley DS, Nutter RL, Kettering JD, Mantik DW, Slater JM (1985) Mouse neoplasia and immunity: effects of radiation, hyperthermia, 2-deoxy-D-glucose, and Corynebacterium parvum. Oncology 42:391–398

    PubMed  CAS  Google Scholar 

  39. Zhu Z, Jiang W, McGinley JN, Thompson HJ (2005) 2-deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res 65:7023–7030

    PubMed  CAS  Google Scholar 

  40. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    PubMed  CAS  Google Scholar 

  41. Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    PubMed  Google Scholar 

  42. Kang HT, Hwang ES (2006) 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 78:1392–1399

    PubMed  CAS  Google Scholar 

  43. Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, Ingram DK, Mattison JA (2010) Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol 243:332–339

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Yao J, Chen S, Mao Z, Cadenas E, Brinton RD (2011) 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS ONE 6(7):e21788. doi: 10.1371/journal.pone.0021788

  45. Weimer S, Priebs J, Kuhlow D, Groth M, Priebe S, Mansfeld J, Merry TL, Dubuis S, Laube B, Pfeiffer AF, Schulz TJ, Guthke R, Platzer M, Zamboni N, Zarse K, Ristow M (2014) D-Glucosamine supplementation extends life span of nematodes and of ageing mice. Nature Commun. doi:10.1038/ncomms4563

    Google Scholar 

  46. Caramés B, Kiosses WB, Akasaki Y, Brinson DC, Eap W, Koziol J, Lotz MK (2013) Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum 65:1843–1852

    PubMed Central  PubMed  Google Scholar 

  47. Takahashi M, Inoue K, Yoshida M, Morikawa T, Shibutani M, Nishikawa A (2009) Lack of chronic toxicity or carcinogenicity of dietary N-acetylglucosamine in F344 rats. Food Chem Toxicol 47:462–471

    PubMed  CAS  Google Scholar 

  48. Rasschaert J, Kadiata MM, Malaisse WJ (2001) Effects of D-mannoheptulose upon D-glucose metabolism in tumoral pancreatic islet cells. Mol Cell Biochem 226:77–81

    PubMed  CAS  Google Scholar 

  49. Ramirez R, Rasschaert J, Laghmich A, Louchami K, Nadi AB, Jijakli H, Kadiata MM, Sener A, Malaisse WJ (2001) Uptake of D-mannoheptulose by normal and tumoral pancreatic islet cells. Int J Mol Med 7:631–638

    PubMed  CAS  Google Scholar 

  50. Roth G, Hayek M, Massimino S, Davenport G, Arking R, Bartke A, Bonkowski M, Ingram D (2009) Mannoheptulose: glycolytic inhibitor and novel caloric restriction mimetic. Exp Biol Abstract 553:1

    Google Scholar 

  51. Davenport G, Massimino S, Hayek M, Burr J, Michael Ceddia M, Yeh C-H, Roth G, Ingram D (2010) Biological activity of avocado-derived mannoheptulose in dogs. Exp Biol Abstract 725:4

    Google Scholar 

  52. Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91

    PubMed  CAS  Google Scholar 

  53. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    PubMed  CAS  Google Scholar 

  54. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:13–621

    Google Scholar 

  55. Chang JM, Chung JW, Jae HJ, Eh H, Son KR, Lee KC, Park JH (2007) Local toxicity of hepatic arterial infusion of hexokinase II inhibitor, 3-bromopyruvate: in vivo investigation in normal rabbit model. Acad Radiol 14:85–92

    PubMed  Google Scholar 

  56. Froelich L, Ding A, Hoyer S (1995) Holeboard maze-learning deficits and brain monoaminergic neurotransmitter concentrations in rats after intracerebroventricular injection of 3-bromopyruvate. Pharmacol Biochem Behav 51:917–922

    PubMed  CAS  Google Scholar 

  57. Jones AR, Porter KE, Dobbie MS (1996) Renal and spermatozoal toxicity of alpha-bromohydrin, 3-bromolactate and 3-bromopyruvate. J Appl Toxicol 16:57–63

    PubMed  CAS  Google Scholar 

  58. Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL (2012) A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr 44:163–170

    PubMed  CAS  Google Scholar 

  59. Guo Z, Mattson MP (2000) In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid β-peptide and iron: evidence for a stress response. Exp Neurol 166:173–179

    PubMed  CAS  Google Scholar 

  60. Parker JC (2001) Glucose-6-phosphate translocase as a target for the design of antidiabetic agents. Drugs Fut 26:687

    CAS  Google Scholar 

  61. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99(7):989–994

    Google Scholar 

  62. Hanson RW, Reshef L (1997) Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 66:581–611

    PubMed  CAS  Google Scholar 

  63. Hakimi P1, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y, Johnson DH, Wilson DL, Kirwan JP, Kalhan SC, Hanson RW (2007) Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282:32844–32855

    Google Scholar 

  64. Bartke A (2008) Insulin and aging. Cell Cycle 7:3338–3344

    PubMed  CAS  Google Scholar 

  65. Roth GS, Lane MA, Ingram DK, Mattison J, Elahi D, Tobin J, Muller D, Metter EJ (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:881

    Google Scholar 

  66. Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5:e8758

    PubMed Central  PubMed  Google Scholar 

  67. Anisimov VN (2013) Metformin: do we finally have an anti-aging drug? Cell Cycle 15:3483–3489

    Google Scholar 

  68. Anisimov VN (2003) Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp Gerontol 38:1041–1049

    PubMed  CAS  Google Scholar 

  69. Kirpichnikov D, McFarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137:25–33

    PubMed  CAS  Google Scholar 

  70. Kim YD, Park KG, Lee YS, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK, Lee CH, Choi HS (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57:306–314

    PubMed  CAS  Google Scholar 

  71. Eurich DT, Majumdar SR, McAlister FA, Tsuyuki RT, Johnson JA (2005) Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care 28:2345–2351

    PubMed  CAS  Google Scholar 

  72. Boussageon R1, Supper I, Bejan-Angoulvant T, Kellou N, Cucherat M, Boissel JP, Kassai B, Moreau A, Gueyffier F, Cornu C (2012) Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials. PLoS Med 9(4):e1001204. doi:10.1371/journal.pmed.1001204

  73. Pilmore HL (2010) Metformin: potential benefits and use in chronic kidney disease. Nephrology 15:412–418

    PubMed  CAS  Google Scholar 

  74. Papanas N, Maltezos E (2009) Oral antidiabetic agents: anti-atherosclerotic properties beyond glucose lowering? Curr Pharm Des 15:3179–3192

    PubMed  CAS  Google Scholar 

  75. Dhahbi JM, Mote PL, Fahy GM, Spindler SR (2005) Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genomics 23:343–350

    PubMed  CAS  Google Scholar 

  76. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C (2005) Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 40:685–693

    PubMed  CAS  Google Scholar 

  77. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE, Semenchenko AV (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7:2769–2773

    PubMed  CAS  Google Scholar 

  78. Anisimov VN, Egormin PA, Piskunova TS, Popovich IG, Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV, Karkach AS, Romanyukha AA (2010) Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle 9:188–197

    PubMed  CAS  Google Scholar 

  79. Cabreiro F1, Au C, Leung KY, Vergara-Irigaray N, Cochemé HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 28:228–239

    Google Scholar 

  80. Slack C1, Foley A, Partridge L (2012) Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS ONE 7(10):e47699. doi:10.1371/journal.pone.0047699

  81. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192

    PubMed Central  PubMed  Google Scholar 

  82. Longo VD, Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31:89–98

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, Barzilai N (2014) Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. doi: 10.1111/acel.12213 (Epub ahead of print)

  84. Kopchick JJ, Kelder B, Gosney ES, Berryman DE (2014) Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 386:34–45

    PubMed  CAS  Google Scholar 

  85. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohen P, Longo VD (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13. doi:10.1126/scitranslmed.3001845

  86. Yuan Y, Kadiyala CS, Ching TT, Hakimi P, Saha S, Xu H, Yuan C, Mullangi V, Wang L, Fivenson E, Hanson RW, Ewing R, Hsu AL, Miyagi M, Feng Z (2012) Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans. J Biol Chem 287:31414–31426

    Google Scholar 

  87. Williams DS, Cash A, Hamadani L, Diemer T (2009) Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell 8:765–768

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Yang J, Kong X, Martins-Santos ME, Aleman G, Chaco E, Liu GE, Wu S, Samols D, Hakimi P, Chiang C, Hanson RW (2009) 3 Activation of SIRT1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating hepatic nuclear factor 4α. J Biol Chem 284(40):27042–27053

    Google Scholar 

  89. Baur JA (2010) Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 131:261–269

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Kume S, Uzu T, Kashiwagi A, Koya D (2010) SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications. Endocr Metab Immune Disord Drug Targets 10:16–24

    PubMed  CAS  Google Scholar 

  91. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    PubMed  CAS  Google Scholar 

  92. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    PubMed  CAS  Google Scholar 

  93. Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13:64–71

    PubMed  CAS  Google Scholar 

  94. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    PubMed  CAS  Google Scholar 

  95. Sakata Y, Zhuang H, Kwansa H, Koehler RC, Doré S (2010) Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp Neurol 224:325–329

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Yang DL, Zhang HG, Xu YL, Gao YH, Yang XJ, Hao XQ, Li XH (2010) Resveratrol inhibits right ventricular hypertrophy induced by monocrotaline in rats. Clin Exp Pharmacol Physiol 37:150–155

    PubMed  CAS  Google Scholar 

  97. Gupta YK, Briyal S, Chaudhary G (2002) Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav 71:245–249

    PubMed  CAS  Google Scholar 

  98. Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L (2009) Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 34:1393–1400

    PubMed  CAS  Google Scholar 

  99. Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, Javed H, Vaibhav K, Islam F (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151

    PubMed  CAS  Google Scholar 

  100. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54:111–118

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Smith JJ, Kenney RD, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, Song J, Razvadauskaite G, Lynch AV, Carney DP, Johnson RJ, Lavu S, Iffland A, Elliott PJ, Lambert PD, Elliston KO, Jirousek MR, Milne JC, Boss O (2009) Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst Biol 10:31

    Google Scholar 

  102. Zou S, Carey JR, Liedo P, Ingram DK, Müller HG, Wang JL, Yao F, Yu B, Zhou A (2009) The prolongevity effect of resveratrol depends on dietary composition and calorie intake in a tephritid fruit fly. Exp Gerontol 44:472–476

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Aljada A, Dong L, Mousa SA (2010) Sirtuin-targeting drugs: Mechanisms of action and potential therapeutic applications. Curr Opin Investig Drugs 11:1158–1168

    PubMed  CAS  Google Scholar 

  104. Das DK, Mukherjee S, Ray D (2010) Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev 15:467–477

    PubMed  CAS  Google Scholar 

  105. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3:e2264

    PubMed Central  PubMed  Google Scholar 

  106. Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285:8340–8351

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Schmidt C (2010) GSK/Sirtris compounds dogged by assay artifacts. Nat Biotechnol 28:185–186

    PubMed  CAS  Google Scholar 

  108. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Hubbard BP, Gomes AP, Dai H, Li J, Case AW, Considine T, Riera TV, Lee JE, E SY, Lamming DW, Pentelute BL, Schuman ER, Stevens LA, Ling AJ, Armour SM, Michan S, Zhao H, Jiang Y, Sweitzer SM, Blum CA, Disch JS, Ng PY, Howitz KT, Rolo AP, Hamuro Y, Moss J, Perni RB, Ellis JL, Vlasuk GP, Sinclair DA (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339:1216–1219

    Google Scholar 

  110. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6:836–843

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Hoffmann E, Wald J, Lavu S, Roberts J, Beaumont C, Haddad J, Elliott P, Westphal C, Jacobson E (2013) Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man. Br J Clin Pharmacol 75:186–196

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Libri V, Brown AP, Gambarota G, Haddad J, Shields GS, Dawes H, Pinato DJ, Hoffman E, Elliot PJ, Vlasuk GP, Jacobson E, Wilkins MR, Matthews PM (2012) A pilot randomized, placebo controlled, double blind phase I trial of the novel SIRT1 activator SRT2104 in elderly volunteers. PLoS ONE 7(12):e51395. doi:10.1371/journal.pone.0051395 (Epub 20 Dec 2012)

  113. Venkatasubramanian S, Noh RM, Daga S, Langrish JP, Joshi NV, Mills NL, Hoffmann E, Jacobson EW, Vlasuk GP, Waterhouse BR, Lang NN, Newby DE (2013) Cardiovascular effects of a novel SIRT1 activator, SRT2104, in otherwise healthy cigarette smokers. J Am Heart Assoc e000042. doi:10.1161/JAHA.113.000042

  114. Baksi A, Kraydashenko O, Zalevkaya A, Stets R, Elliott P, Haddad J, Hoffmann E, Vlasuk GP, Jacobson EW (2014) A phase II, randomized, placebo-controlled, double-blind, multi-dose study of SRT2104, a SIRT1 activator, in subjects with type 2 diabetes. J Clin Pharmacol. doi:10.1111/bcp.12327

  115. Kincaid B1, Bossy-Wetzel E (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 5:48

    Google Scholar 

  116. Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V, Franceschi C, Passarino G, De Benedictis G (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85:258–263

    PubMed  CAS  Google Scholar 

  117. Park SH, Ozden O, Jiang H, Cha YI, Pennington JD, Aykin-Burns N, Spitz DR, Gius D, Kim HS (2013) Sirt3, mitochondrial ROS, ageing, and carcinogenesis. Int J Mol Sci 12:6226–6239

    Google Scholar 

  118. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17:41–52

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Mouchiroud L, Houtkooper RH, Auwerx J (2013) NAD+ metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol 48:397–408

    PubMed  CAS  Google Scholar 

  120. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 28:11500–11510

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Gong B, Pan Y, Vempati P, Zhao W, Knable L, Ho L, Wang J, Sastre M, Ono K, Sauve AA, Pasinetti GM (2013) Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging 34:1581–1588

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Liu D, Pitta M, Jiang H, Lee JH, Zhang G, Chen X, Kawamoto EM, Mattson MP (2013) Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol Aging 34:1564–1580

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y, Price NL, Schmeisser S, Schuster S, Pfeiffer AF, Guthke R, Platzer M, Hoppe T, Cohen HY, Zarse K, Sinclair DA, Ristow M (2013) Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol 9:693–700

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123:980–989

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    PubMed  CAS  Google Scholar 

  126. Tokunaga C, Yoshino K, Yonezawa K (2004) mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 313:443–446

    PubMed  CAS  Google Scholar 

  127. Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224

    PubMed  CAS  Google Scholar 

  128. Kim D, Sarbassov D, Ali S, Latek R, Guntur K, Erdjument-Bromage H, Tempst P, Sabatini D (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895–904

    PubMed  CAS  Google Scholar 

  129. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    PubMed  CAS  Google Scholar 

  130. Kim D, Sarbassov D, Ali S, King J, Latek R, Erdjument-Bromage H, Tempst P, Sabatini D (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    PubMed  CAS  Google Scholar 

  131. Frias M, Thoreen C, Jaffe J, Schroder W, Sculley T, Carr S, Sabatini D (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16:1865–1870

    PubMed  CAS  Google Scholar 

  132. Sarbassov D, Ali S, Kim D, Guertin D, Latek R, Erdjument-Bromage H, Tempst P, Sabatini D (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    PubMed  CAS  Google Scholar 

  133. Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN (2013) mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA 110:12526–12534

    PubMed Central  PubMed  CAS  Google Scholar 

  134. Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 15:683–688

    Google Scholar 

  135. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Zemke D, Azhar S, Majid A (2007) The mTOR pathway as a potential target for the development of therapies against neurological disease. Drug News Perspect 20:495–499

    PubMed  CAS  Google Scholar 

  137. Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G, Diaz V, Sloane L, Maslin K, Treaster S, Réndon S, van Remmen H, Ward W, Javors M, Richardson A, Austad SN, Fischer K (2014) Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci 69:119–130

    PubMed  CAS  Google Scholar 

  138. Fok WC, Chen Y, Bokov A, Zhang Y, Salmon AB, Diaz V, Javors M, Wood WH 3rd, Zhang Y, Becker KG, Pérez VI, Richardson A (2014) Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS ONE 9(1):e83988

    PubMed Central  PubMed  Google Scholar 

  139. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, Hejtmancik JF, Nadon N, Strong R, Wood LK, Woodward MA, Miller RA (2012) Rapamycin slows aging in mice. Aging Cell 11:675–682

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Richardson A (2013) Rapamycin, anti-aging, and avoiding the fate of Tithonus. J Clin Invest 123:3204–3206

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Leontieva OV, Paszkiewicz GM, Blagosklonny MV (2014) Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet. Aging Cell. doi:10.1111/acel.12211 (Epub ahead of print)

  142. Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schröder S, Adler T, Afonso LC, Aguilar-Pimentel JA, Becker L, Garrett L, Hans W, Hettich MM, Holtmeier R, Hölter SM, Moreth K, Prehn C, Puk O, Rácz I, Rathkolb B, Rozman J, Naton B, Ordemann R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Ehninger G, Graw J, Höfler H, Klingenspor M, Klopstock T, Ollert M, Stypmann J, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Ehninger D (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123:3272–3291

    Google Scholar 

  143. Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, Strong R, Richardson A, Oddo S (2012) Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling. Aging Cell 11:326–335

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, Clavaguera F, Sinnreich M, Kappos L, Goedert M, Tolnay M, Winkler DT (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS ONE 8(5):e62459

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ, Kapahi P, Nelson MD, Kennedy BK, Melov S (2013) Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12:851–862

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Rosenfeld SV, Blagosklonny MV (2011) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10:4230–4236

    PubMed  CAS  Google Scholar 

  147. Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29:3733–3744

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57:945–957

    PubMed  CAS  Google Scholar 

  149. Chang GR, Wu YY, Chiu YS, Chen WY, Liao JW, Hsu HM, Chao TH, Hung SW, Mao FC (2009) Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJ mice. Basic Clin Pharmacol Toxicol 105:188–198

    PubMed  CAS  Google Scholar 

  150. Houde VP, Brûlé S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, Marette A (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59:1338–1348

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Fang Y, Westbrook R, Hill C, Boparai RK, Arum O, Spong A, Wang F, Javors MA, Chen J, Sun LY, Bartke A (2013) Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab 217:456–462

    Google Scholar 

  152. Jagannath C, Bakhru P (2012) Rapamycin-induced enhancement of vaccine efficacy in mice. Methods Mol Biol 821:295–303

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643

    PubMed Central  PubMed  CAS  Google Scholar 

  154. Minois N (2014) Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines—a mini-review. Gerontology (Epub ahead of print)

    Google Scholar 

  155. Ali AA, Poortvliet E, Strömberg R, Yngve A (2011) Polyamines in foods: development of a food database. Food Nutr Res 55:5572

    Google Scholar 

  156. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:305–314

    Google Scholar 

  157. Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, López-Otín C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Nishimura K, Shiina R, Kashiwagi K, Igarashi K (2006) Decrease in polyamines with aging and their ingestion from food and drink. J Biochem 139:81–90

    PubMed  CAS  Google Scholar 

  159. Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, Vincenzetti S, Mignini F, Napolioni V (2012) Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res 15:590–595

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roth, G.S., Ingram, D.K. (2015). Calorie Restriction Mimetics: Progress and Potential. In: Yu, B. (eds) Nutrition, Exercise and Epigenetics: Ageing Interventions. Healthy Ageing and Longevity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14830-4_10

Download citation

Publish with us

Policies and ethics