Skip to main content

Chemical and Microbiological Aspects of the Interaction Between Food and Food Packages

  • Chapter
  • First Online:
Food Packaging Hygiene

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

  • 2034 Accesses

Abstract

The purpose of this paper has been to present the interactions between micro-organisms, food containers and packaged foods. The subject of assessment has been the impact of food packaging-related factors on properties of containers and the behaviour of food micro-organisms. In particular, one of the main questions concerns the role of food packages as a source of micro-organisms with the consequent food contamination. In addition, the influence of technological microflora on the packaging features should be discussed and analysed. In relation to these topics, the importance of microflora adhesion and the formation of biofilms on the inner surface of food packages are critical factors. The damage of packages and the possibility of mathematical modelling of micro-organism permeation dynamics through the leak have also been presented. Moreover, the impact of packaging systems and the chemical typology of food contact approved materials have been presented in the context of the preservation of micro-organisms inside containers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFU:

Colony-forming unit

Φ:

Diameter

EVOH:

Ethylene vinyl alcohol

C H :

Inhibition coefficient

L :

Length

LDPE:

Low-density polyethylene

PA:

Polyamide

PE:

Polyethylene

PET:

Polyethylene terephthalate

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl chloride

References

  1. Raaska L, Sillanpää J, Sjöberg AM, Suihko ML (2002) Potential microbiological hazards in the production of refined paper products for food applications. J Ind Microbiol Biotechnol 28(4):225–231. doi:10.1038/sj/jim/7000238

    Article  CAS  Google Scholar 

  2. Ekman J (2011) Bacteria colonizing paper machines. Dissertation, University of Helsinki

    Google Scholar 

  3. Pirttijarvi T (2000) Contaminant aerobic sporeforming bacteria in the manufacturing processes of food packaging board and food. Dissertation, University of Helsinki

    Google Scholar 

  4. Souminen I, Suihko ML, Salkinoja-Salonen M (1997) Microscopic study of migration of microbes in food-packaging paper and board. J Ind Microbiol Biotechnol 19:104–113. doi:10.1038/sj.jim.2900424

    Article  Google Scholar 

  5. Valsanen OM, Mentu J, Salklnoja-Salonen MS (1991) Bacteria in food packaging paper and board. J Appl Bacteriol 71:130133. doi:10.1111/j.1365-2672.1991.tb02967.x

    Article  Google Scholar 

  6. Suihko ML, Skytta E (1997) A study of the microflora of some recycled fibre pulps, boards and kitchen rolls. J Appl Microbiol 83:199–207. doi:10.1046/j.1365-2672.1997.00219.x

    Article  CAS  Google Scholar 

  7. Kneifel W, Kaser A (1994) Microbiological quality parameters of packaging materials used in the dairy industry. Arch Lebensmittelhyg 45:25–48

    Google Scholar 

  8. Narciso JA, Parish ME (1997) Endogenous mycoflora of gable-top carton paperboard used for packaging fruit juice. J Food Sci 62(6):1223–1239. doi:10.1111/j.1365-2621.1997.tb12249

    Article  CAS  Google Scholar 

  9. Sammons LD (1999) Migration of Penicillium spinulosum from paperboard packaging to extended shelf life milk. Dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  10. Narciso JA, Parish ME (2000) Relationship of mold in paperboard packaging to food spoilage. Dairy Food Environ Sanit 20(12):944–951

    Google Scholar 

  11. Suihko ML, Stackebrandt E (2003) Identification of aerobic mesophilic bacilli isolated from board and paper products containing recycled fibers. J Appl Microbiol 94(1):25–34. doi:10.1046/j.1365-2672.2003.01803.x

    Article  CAS  Google Scholar 

  12. Priha O, Hallamaa K, Saarela M, Raaska L (2004) Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR. J Ind Microbiol Biotechnol 31(4):161–169. doi:10.1007/s10295-004-0125-x

    Article  CAS  Google Scholar 

  13. Guzinska K, Owczarek M, Dymel M (2012) Investigation in the microbiological purity of paper and board packaging intended for contact with food. Fibres Text East Eur 20(6B96):186–190. Available http://fibtex.lodz.pl/2012/6B/186.pdf. Accessed 28 Oct 2014

  14. Rzeżutka A, Cook N (2004) Survival of human enteric viruses in the environment and food. FEMS Microbiol Rev 28:441–453. doi:10.1016/j.femsre.2004.02.001

    Article  Google Scholar 

  15. Noyce JO, Michels H, Keevil CW (2007) Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol 73(8):2748–2750. doi:10.1128/AEM.01139-06

    Article  CAS  Google Scholar 

  16. Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfur HH (1982) Survival of influenza Viruses on environmental surfaces. J Infect Dis 146(1):47–51. doi:10.1093/infdis/146.1.47

    Article  CAS  Google Scholar 

  17. Sattar SA, Lloyd-Evans N, Springthorpe VS, Nair RC (1986) Institutional outbreaks of rotavirus diarrhoea: potential role of fomites and environmental surfaces as vehicles for virus transmission. J Hyg (Lond) 96(2):277–289. doi:10.1017/S0022172400066055

    Article  CAS  Google Scholar 

  18. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BCM Inf Dis 6:130. doi:10.1186/1471-2334-6-130

    Article  Google Scholar 

  19. Steinka I, Przybyłowski P (1998) Jakość mikrobiologiczna kwasowych serów twarogowych a metody pakowania. Przem Spoż 11:47–49

    Google Scholar 

  20. Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. PNAS 98(11):5981–5985. doi:10.1073/pnas11143098

    Article  CAS  Google Scholar 

  21. Teixeira P, Silva S, Araujo F, Azeredo J, Oliveira R (2007) Bacterial adhesion to food contacting surfaces. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Microbiology series 1 vol 1. Formatex, Badajoz, pp 13–20. Available http://www.formatex.org/microbio/pdf/Pages13-20.pdf. Accessed 27 oct 2014

  22. Silva CAS, Andrade NJ, Soares NFF, Fereira SO (2003) Evaluation of ultraviolet radiation to control microorganisms adhering to low-density polyethylene films. Braz J Microbiol 34(2):175–178. doi:10.1590/S1517-83822003000200017

    Article  Google Scholar 

  23. Steinka I (2003) Wpływ interakcji opakowanie—produkt na jakość mikrobiologiczną hermetycznie pakowanych serów twarogowych. Wydawnictwo Akademii Morskiej, Gdynia

    Google Scholar 

  24. Silva S, Texeira P, Oliveira R, Azeredo J (2008) Adhesion to and viability of Listeria monocytogenes on food contact surfaces. J Food Protect 71(7):1379–1385

    Google Scholar 

  25. Goldberg S, Doyle RJ, Rosenberg M (1990) Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers. J Bacteriol 172(10):5650–5654

    CAS  Google Scholar 

  26. Naber CK (2009) Staphylococcus aureus bacteremia: epidemiology, pathophisiology, and management strategies. Clin Inf Dis 48(Suppl 4):S 231–237. doi:10.1086/598189

  27. Boks NP, Norde W, van der Mei HC, Busscher J (2008) Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiol 154(3):3122–3133. doi:10.1099/mic.0.2008/018622-0

    Article  CAS  Google Scholar 

  28. Thio BJR, Meredith C (2008) Quantification of E. coli adhesion to polyamides and polystyrene with atomic force microscopy. Colloids Surf B Biointerfaces 65:308–312. doi:10.1016/j.colsurfb.2008.05.005

    Article  CAS  Google Scholar 

  29. Characklis WG (1990) Microbial fouling. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 523–634

    Google Scholar 

  30. Jeje JO, Oladepo KT (2012) A study of sources of microbial contamination of packaged water. Trans J Sci Technol 2(9):63–76. Available http://tjournal.org/tjst_october_2012/6.pdf. Accessed 28 Oct 2014

  31. Busscher HJ, van der Mei H (2006) Microbial adhesion in flow displacement systems. Crit Microbiol Rev 19(1):127–141. doi:10.1128/CMR.19.1.127-141.2006

    Article  Google Scholar 

  32. Steinka I (2008) Lactic acid cheese safety. Nova Science Publishers Inc, New York

    Google Scholar 

  33. Steinka I, Morawska M (2010) Ocena biofilmu formowanego przez wybrane bakterie i grzyby na powierzchni opakowań stosowanych do pakowania twarogów. Unpublished data

    Google Scholar 

  34. Steinka I, Kukulowicz A (2004) Assessment of adherence degree of adhesion of the Lactococcus sp. to surface of PA/PE laminates. Jt Proc 17:51–53. WSM Gdynia, Hochschule Bremerhaven

    Google Scholar 

  35. Steinka I, Kukułowicz A (2004) Adhesion of Lactococcus bacteria to the surface of traditional and biodegradable packaging laminates. Polish J Nutr Sci 2:151–156

    Google Scholar 

  36. Steinka I, Morawska M (2010) Ocena biofilmu formowanego przez wybrane bakterie i grzyby na powierzchni opakowań stosowanych do pakowania twarogów. Unpublished data

    Google Scholar 

  37. Luo H, Wan K, Wang HH (2005) High-frequency conjugation system facilitates biofilm formation and pAMβ1 transmission by Lactococcus lactis. Appl Environ Microbiol 71(6):2970–2978. doi:10.1128/AEM.71.6.2970-2978.2005

    Article  CAS  Google Scholar 

  38. Morawska M, Steinka I, Blokus-Roszkowska I (2013) Modelowanie matematyczne w ocenie jakości materiałów opakowaniowych. Zeszyt Naukowe Akademii Morskiej w Gdyni 80:5–12. Available http://zeszyty.am.gdynia.pl/artykul/Modelowanie%20matematyczne%20w%20ocenie%20jakosci%20materialow%20opakowaniowych_201.pdf. Accessed 28 Oct 2014

  39. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84. doi:10.1007/s002480000057

    Google Scholar 

  40. Keller S, Marcy J, Blakistone B, Hackney C, Carter WH, Lacy G (2003) Effect of microorganism characteristics on leak size critical to predicting package sterility. J Food Prot 66(9):1716–1719

    Google Scholar 

  41. Gnanasekharan V, Floros JD (1994) Package integrity evaluation. Criteria for selecting a method. Part I. Pack Technol Eng 3(6):44–48

    Google Scholar 

  42. McEldowney S, Fletcher M (1990) The effect of physical and microbiological factors on food container leakage. J Appl Bacteriol 69(2):190–205. doi:10.1111/j.1365-2672.1990.tb01509.x

    Article  CAS  Google Scholar 

  43. Keller S, Marcy J, Blakistone B, Hackney C, Carter WH, Lacy G (2003) Application of fluid modeling to determine threshold leak size for liquid foods. J Food Prot 66(7):1260–1268

    Google Scholar 

  44. Song YS, Hargraves WA (1998) Postprocess contamination of flexible pouches challenged by in situ immersion biotest. J Food Prot 61(12):1644–1648

    CAS  Google Scholar 

  45. Keller SW (1998) Determination of the leak size critical to package sterility maintenance. Dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  46. Gibney MJ (2000) Predicting package defects: quantification of critical leak size. Dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  47. Morrical BD, Goverde M, Grausse J, Gerwig T, Vorgrimler L, Morgen R, Büttiker JP (2007) Leak testing in parenteral packaging: establishment of direct correlation between helium leak rate measurements and microbial ingress for two different leak types. PDA J Pharm Sci Technol 61(4):226–236

    CAS  Google Scholar 

  48. Ravishanker S, Maks ND, Teo AYL, Strassheim HE, Pascall MA (2005) Minimum leak size determination, under laboratory and commercial conditions, for bacterial entry into polymer trays used for shelf-stable food packaging. J Food Prot 68(11):2376–2382

    Google Scholar 

  49. Pethe V, Dove M, Terentiev A (2011) Integrity testing of flexible containers. BioPharm Int 24(11):42–49. Available http://www.biopharminternational.com/biopharm/article/articleDetail.jsp?id=747047&sk=&date=&pageID=6. Accessed 28 oct 2014

  50. Ravishanker S, Maks ND, Teo AYL, Strassheim HE, Pascall MA (2005) Minimum leak size determination, under laboratory and commercial conditions, for bacterial entry into polymer trays used for shelf-stable food packaging. J Food Prot 68(11):2376–2382

    Google Scholar 

  51. Hurme EU, Wirtanen G, Axelson-Larsson L, Pachero NAM, Ahvenainen R (1997) Penetration of bacteria through microholes in semirigid aseptic and retort packages. J Food Prot 60(5):520–524

    Google Scholar 

  52. Avhenainen R, Mattila-Sandholm T, Axelson L, Wirtanen G (2006) The effect of microhole size and foodstuff on the microbial integrity of aseptic plastic cups. Packaging Technol Sci 5(2):101–107. doi:10.1002/pts.2770050209

    Google Scholar 

  53. Steinka I (2012) Opakowania hermetyczne bezpieczeństwo i akceptacja konsumencka. Informator Masarski 6/2012, Masterpress Poradnik, Białystok

    Google Scholar 

  54. Steinka I (2009) Assessment of interactions occurring between microflora and packaging applied for food. In: Bellinghouse VC (ed) Food processing: methods, techniques and trends. Nova Science Publishers Inc, New York

    Google Scholar 

  55. Nychas GJE, Skandamis PN, Tassou CC, Koutsoumanis KP (2008) Meat spoilage during distribution. Meat Sci 78(1–2):77–89. doi:10.1016/j.meatsci.2007.06.020

    Article  Google Scholar 

  56. Gilchrist JE, Rhea US, Dickerson RW, Campbell JE (1985) Helium leak test for micron-sized holes in canned foods. J Food Prot 48(10):856–860

    Google Scholar 

  57. Jarrosson BP (1992) Closure integrity of heat sealed aseptic packaging using scanning acoustic microscopy. Dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  58. Lake DE, Graves RR, Lesnewski RS, Anderson JE (1985) Postprocessing spoilage of low-acid canned food by mesophilic anaerobic sporeforms. J Food Prot 48(3):221–226

    Google Scholar 

  59. Sivaramakrishna V, Mehta A, Schramm G, Pascall MA (2007) Leak detection in polyethylene terephthalate bottles filled with water and pulped and unpulped orange juice using a vacuum system. J Food Prot 70(10):2365–2372

    Google Scholar 

  60. Steinka I (2011) Mikrobiologia żywności i artykułów przemysłowych. Wydawnictwo Akademii Morskiej, Gdynia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Steinka .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Steinka, I. (2015). Chemical and Microbiological Aspects of the Interaction Between Food and Food Packages. In: Food Packaging Hygiene. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-14827-4_5

Download citation

Publish with us

Policies and ethics