Advertisement

Sedimentary Crystals of Magnetic Hematite Cubes and the Influence of an External Magnetic Field

  • Janne-Mieke MeijerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The structure of spontaneously formed crystals in the sediments of colloidal hematite cubes and silica coated hematite cubes is studied using small angle X-ray scattering (SAXS). The cube interactions were modified by dispersing the cubes in different solvents. The particles were allowed to form sediments under the simultaneous effect of the gravitational field and in a number of cases in an external magnetic field. The SAXS measurements revealed that by increasing the double layer repulsion, that opposes the magnetic and Van der Waals attractions, ordering can be induced in the sedimenting systems of the cubes. The presence of an external magnetic field during sedimentation induced the formation of a single crystal structure with long-range order, that showed different symmetries, four-fold or six-fold, close to the fluid-solid interface.

Keywords

Bragg Peak Cube Size Double Layer Repulsion Bragg Spot Gravitational Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Dmytro Byelov and Laura Rossi are thanked for their collaboration on this project and the many discussions and useful suggestions for this chapter. The Netherlands Organization for Scientific Research (NWO) and the European Synchrotron Radiation Facility (ESRF) in Grenoble are thanked for the provided beam-time. G. Portale and D. Detolenaire from BM26 and A. Snigirev, I. Snigireva, C. Detlefs and T. Roth from ID06 are thanked for their support during the experiments. For their assistance during the measurements Jan Hilhorst, Anke Leferink op Reinink and Mark Vis are thanked. For their contributions to the particle syntheses Sonja Castillo, Vera Meester, Lisette Pompe, Julius de Folter and Fabian Hagemans are thanked. Part of this work is reproduced by permission of The Royal Society of Chemistry (RSC) [31].

Supplementary material

References

  1. 1.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513–517 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    V. Malik, A.V. Petukhov, L. He, Y. Yin, M. Schmidt, Langmuir 28, 14777–14783 (2012)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, M. Janner, L. He, M. Wang, Y. Hu, Y. Lu, Y. Yin, Nano Lett. 13, 1770–1775 (2013)Google Scholar
  4. 4.
    A. van Blaaderen, Nature 439, 545–546 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    S.C. Glotzer, M.J. Solomon, Nature Mater. 6, 557–562 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Yang, S. Kim, J. Lim, G. Yi, J. Mater. Chem. 18, 2177–2190 (2008)CrossRefGoogle Scholar
  7. 7.
    P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453–457 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. OzakiI, H. Suzuki, K. Takahashi, E. Matijevic, J. Colloid Interface Sci. 113, 76–80 (1986)CrossRefGoogle Scholar
  9. 9.
    S.H. Lee, C.M. Liddell, Small 5, 1957–1962 (2009)CrossRefGoogle Scholar
  10. 10.
    N.K. Chaudhari, H.C. Kim, C.S. Kim, J. Park, J. Yu, CrystEngComm 14, 2024–2031 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Rossi, Colloidal Superballs, Ph.D. Thesis, Utrecht University, 2012Google Scholar
  12. 12.
    L. Cromieres, V. Moulin, B. Fourest, E. Giffaut, Colloids Surf. A 202, 101–115 (2002)CrossRefGoogle Scholar
  13. 13.
    A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature 384, 49–51 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    V. Kohn, I. Snigireva, A. Snigirev, Opt. Commun. 216, 247–260 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Drakopoulos, A. Snigirev, I. Snigireva, J. Schilling, Appl. Phys. Lett. 86, 014102 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    E. Homan, M. Konijnenburg, C. Ferrero, R. Ghosh, I. Dolbnya, W. Bras, J. Appl. Cryst. 34, 519–522 (2001)CrossRefGoogle Scholar
  17. 17.
    A. Petukhov, J. Thijssen, D. t Hart, A. Imhof, A. van Blaaderen, I. Dolbnya, A. Snigirev, A. Moussaid, I. Snigireva, J. Appl. Cryst. 39, 137–144 (2006)Google Scholar
  18. 18.
    J.H.J. Thijssen, A.V. Petukhov, D.C. t Hart, A. Imhof, C.H.M. van der Werf, R.E.I. Schropp, A. van Blaaderen, Adv. Mater 18, 1662–1666 (2006)Google Scholar
  19. 19.
    A. Bosak, I. Snigireva, K.S. Napolskii, A. Snigirev, Adv. Mater. 22, 3256–3259 (2010)CrossRefGoogle Scholar
  20. 20.
    D.V. Byelov, J.M. Meijer, I. Snigireva, A. Snigirev, L. Rossi, E. van den Pol, A. Kuijk, A. Philipse, A. Imhof, A. van Blaaderen, G.J. Vroege, A.V. Petukhov, RCS Adv. 3, 15670–15677 (2013)Google Scholar
  21. 21.
    S. Sacanna, L. Rossi, A.P. Philipse, Langmuir 23, 9974–9982 (2007)CrossRefGoogle Scholar
  22. 22.
    A.L. Andrade, J.D. Fabris, J.D. Ardisson, M.A. Valente, J.M.F. Ferreira, J. Nanomat. 454759 (2012)Google Scholar
  23. 23.
    A.I. Abrikosov, S. Sacanna, A.P. Philipse, P. Linse, Soft Matter 9, 8904–8913 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    G.B. Alexander, W.M. Heston, R.K. Iler, J. Phys. Chem. 6, 453–455 (1954)CrossRefGoogle Scholar
  25. 25.
    Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 79, 041309 (2009)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    R.D. Batten, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 061105 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Soft Matter 8, 12135–12135 (2012)Google Scholar
  28. 28.
    M. Marechal, U. Zimmermann, H. Loewen, J. Chem. Phys. 136, 144506 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    M. Aoshima, M. Ozaki, A. Satoh, J. Phys. Chem. C 116, 17862–17871 (2012)CrossRefGoogle Scholar
  30. 30.
    G.S. Park, D. Shindo, Y. Waseda, T. Sugimoto, J. Colloid Interface Sci. 177, 198–207 (1996)CrossRefGoogle Scholar
  31. 31.
    J.M. Meijer, D.V. Byelov, L. Rossi, A. Snigirev, I. Snigireva, A.P. Philipse, A.V. Petukhov, Soft Matter 9, 10729–10738 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations