Skip to main content

Self-assembly of Colloidal Cubes Induced by Sedimentation

  • Chapter
  • First Online:
Colloidal Crystals of Spheres and Cubes in Real and Reciprocal Space

Part of the book series: Springer Theses ((Springer Theses))

  • 493 Accesses

Abstract

In this chapter the sedimentation of hollow silica cubes into dense packings is investigated. The effect of the Debye screening length on the close-packed structures as well as on sedimentation behavior is studied. The sediment structures are characterized in detail using small angle X-ray scattering. Remarkably, despite their rapid sedimentation the cubes order into a dense structure with both translational and orientational ordering. The structure consists of layers of cubes aligned against the capillary walls. The layers possess rhombic intra-layer ordering described by the Λ1-lattice as predicted for 2D rounded cube structures and are stacked with an ABA type stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 79, 041309 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. R.D. Batten, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 1–13 (2010)

    Article  Google Scholar 

  3. R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Soft Matter 8, 12135 (2012)

    Article  Google Scholar 

  4. L. Rossi, S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, A.P. Philipse, Soft Matter 7, 4139 (2011)

    Article  ADS  Google Scholar 

  5. L. Rossi, Colloidal Superballs, Ph.D. Thesis, Utrecht University, 2012

    Google Scholar 

  6. P.N. Pusey, W. van Megen, Nature 320, 340–342 (1986)

    Article  ADS  Google Scholar 

  7. C.G. De Kruif, P.W. Rouw, J.W. Jansen, A. Vrij, J. Physique 46, 295–308 (1985)

    Article  Google Scholar 

  8. D.M.E. Thies-Weesie, Sedimentation and Liquid Permeation of Inorganic Colloids, Ph.D. Thesis, Utrecht University, 1995

    Google Scholar 

  9. E. Homan, M. Konijnenburg, C. Ferrero, R. Ghosh, I. Dolbnya, W. Bras, J. Appl. Cryst. 34, 519–522 (2001)

    Article  Google Scholar 

  10. A. Petukhov, J. Thijssen, D. t Hart, A. Imhof, A. van Blaaderen, I. Dolbnya, A. Snigirev, A. Moussaid, I. Snigireva, J. Appl. Cryst. 39, 137–144 (2006)

    Google Scholar 

  11. J.H.J. Thijssen, A.V. Petukhov, D.C.‘t Hart, A. Imhof, C.H.M. van der Werf, R.E.I. Schropp, A. van Blaaderen, Adv. Mater. 18, 1662–1666 (2006)

    Google Scholar 

  12. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature 384, 49–51 (1996)

    Article  ADS  Google Scholar 

  13. V. Kohn, I. Snigireva, A. Snigirev, Opt. Commun. 216, 247–260 (2003)

    Article  ADS  Google Scholar 

  14. M. Drakopoulos, A. Snigirev, I. Snigireva, J. Schilling, Appl. Phys. Lett. 86, 014102 (2005)

    Article  ADS  Google Scholar 

  15. K. Zhao, R. Bruinsma, T.G. Mason, Proc. Natl. Acad. Sci. U.S.A. 108, 2684–2687 (2011)

    Article  ADS  Google Scholar 

  16. Y. Zhang, F. Lu, D. van der Lelie, O. Gang, Phys. Rev. Lett. 107, 135701 (2011)

    Article  ADS  Google Scholar 

  17. Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. Lett. 100, 245504 (2008)

    Article  ADS  Google Scholar 

  18. C. Avendano, F.A. Escobedo, Soft Matter 8, 4675–4681 (2012)

    Article  ADS  Google Scholar 

  19. A. Guinier, X-Ray Diffraction in Crystal, Imperfect Crystals, and Amorphous Bodies (Dover, New York, 1994)

    Google Scholar 

Download references

Acknowledgments

Antara Pal is thanked for useful discussions and contributions to the data analysis. The Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) is acknowledged for the provided beam-time. Anke Leferink op Reinink and Joost Wolters are thanked for their assistance during the SAXS measurements. The whole DUBBLE team and especially Guiseppe Portale and Daniel Hermida Merino are thanked for their excellent support during the SAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne-Mieke Meijer .

Appendix

Appendix

1.1 A.1 Form Factor Contributions in Different Directions

For the high q features in the 2D SAXS patterns shown in Fig. 8.11a, good form factor fits were obtained using Eq. (6.2) for that of a shell. For the vertical peaks (Fig. 8.11b) a shell with an inner diameter D 1 = 1.37 μm and outer diameter D 2 = 1.47 μm was found to provide a good match. These diameters correspond to the precursor hematite cube and hollow silica cube face diagonals, L, as determined via Eq. (5.2). For the diagonal peaks (Fig. 8.11c) a shell with D 1 = 1.18 μm and D 2 = 1.27 μm provided the best match, which correspond to the edge lengths D of the cubes (see Sect. 8.2.1). These form factor fits indicate that the cubes are oriented with one face against the capillary walls and the the face diagonal is alligned to the capillary length and gravity.

Fig. 8.11
figure 11

a 2D SAXS pattern of sample T in the single crystal region. b Vertical profile fitted with P(q)shell based on the long diagonal L. c Diagonal profile along high q features fitted with P(q)shell for the edge length D as well as P(q)shell for L, which have different minima

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meijer, JM. (2015). Self-assembly of Colloidal Cubes Induced by Sedimentation. In: Colloidal Crystals of Spheres and Cubes in Real and Reciprocal Space. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-14809-0_8

Download citation

Publish with us

Policies and ethics