Skip to main content

Inducing Defects in Colloidal Crystals with Thermosensitive PNIPAm Particles

  • Chapter
  • First Online:
Book cover Colloidal Crystals of Spheres and Cubes in Real and Reciprocal Space

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Thermosensitive colloidal PNIPAm particles are employed to induce defect structures into a colloidal crystal. The PNIPAm particle size can be controlled by temperature due to collapse of the polymer network above the lower critical solution temperature (LCST). By embedding these PNIPAm particles into a colloidal crystal formed by non-thermoresponsive particles vacancy-like structures could be induced above the LCST and interstitial structures below the LCST. Our aim is to study the three-dimensional defect diffusion by tracing individual particles and to gain insight into the mechanism involved. Here, we present the observed defect diffusion induced in a mixed system of fluorescently labeled PNIPAm and PNIPAm-AAc particles in which defect diffusion was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.G. Bueren, Imperfections in Crystals (North-Holland Publishing Company, Amsterdam, 1961)

    Google Scholar 

  2. D. Hull, D.J. Bacon, Introduction to Dislocations (Elsevier Ltd., Amsterdam, 2001)

    Google Scholar 

  3. R.S. Muller, I.K. Theodore, M. Chan, Device electronics for integrated circuits (Wiley, Colorado, 2002)

    Google Scholar 

  4. G.I. Taylor, Proc. R. Soc. London Ser. A 145, 362–387 (1934)

    Article  MATH  ADS  Google Scholar 

  5. Y.N. Osetsky, D.J. Bacon, B.N. Singh, B. Wirth, J. Nucl. Mater. 307, 852–861 (2002)

    Article  ADS  Google Scholar 

  6. Y.N. Osetsky, A. Serra, B.N. Singh, S.I. Golubov, Philos. Mag. A 80, 2131–2157 (2000)

    Article  ADS  Google Scholar 

  7. W. Bollman, Phys. Rev. 103, 1588–1589 (1956)

    Article  ADS  Google Scholar 

  8. J.W. Menter, Proc. R. Soc. London Ser. A 236, 119 (1956)

    Article  ADS  Google Scholar 

  9. P.B. Hirsch, R.W. Horne, M.J. Whelan, Phil. Mag. 1, 677 (1956)

    Article  ADS  Google Scholar 

  10. K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, H. Mori, Science 318, 956–959 (2007)

    Article  ADS  Google Scholar 

  11. Y. Matsukawa, S.J. Zinkle, Science 318, 959–962 (2007)

    Article  ADS  Google Scholar 

  12. J. Perrin, Annales De Chimie Et De Physique 18, 5–114 (1909)

    Google Scholar 

  13. U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258–262 (2001)

    Article  ADS  Google Scholar 

  14. P.G. Bolhuis, D. Frenkel, S.C. Mau, D.A. Huse, Nature 388, 235–236 (1997)

    Article  ADS  Google Scholar 

  15. J. Brijitta, B.V.R. Tata, R.G. Joshi, T. Kaliyappan, J. Chem. Phys. 131, 074904 (2009)

    Article  ADS  Google Scholar 

  16. J. Hilhorst, A.V. Petukhov, Phys. Rev. Lett. 107, 095501 (2011)

    Article  ADS  Google Scholar 

  17. A. Pertsinidis, X. Ling, Nature 413, 147–150 (2001)

    Article  ADS  Google Scholar 

  18. A. Pertsinidis, X.S. Ling, New J. Phys. 413, 147–150 (2005)

    Google Scholar 

  19. C. Eisenmann, U. Gasser, P. Keim, G. Maret, H.H. von Grunberg, Phys. Rev. Lett. 95, 185502 (2005)

    Article  ADS  Google Scholar 

  20. A. Libal, C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. E 75, 011403 (2007)

    Article  ADS  Google Scholar 

  21. W. Lechner, C. Dellago, Soft Matter 5, 2752–2758 (2009)

    Article  ADS  Google Scholar 

  22. L.C. DaSilva, L. Candido, G.-Q. Hai, O.N. Oliveira Jr, Appl. Phys. Lett. 99, 031904 (2011)

    Article  ADS  Google Scholar 

  23. S. van Teeffelen, C.V. Achim, H. Loewen, Phys. Rev. E 87, 022306 (2013)

    Article  ADS  Google Scholar 

  24. W. Lechner, D. Polster, G. Maret, P. Keim, C. Dellago, Phys. Rev. E 88, 060402 (2013)

    Article  ADS  Google Scholar 

  25. R. Pelton, Adv. Colloid Interface Sci. 85, 1–33 (2000)

    Article  Google Scholar 

  26. R. Pelton, J. Colloid Interface Sci. 348, 673–674 (2010)

    Article  Google Scholar 

  27. A.M. Alsayed, M.F. Islam, J. Zhang, P.J. Collings, A.G. Yodh, Science 309, 1207–1210 (2005)

    Article  ADS  Google Scholar 

  28. Y. Peng, Z. Wang, A.M. Alsayed, A.G. Yodh, Y. Han, Phys. Rev. Lett. 104, 205703 (2010)

    Article  ADS  Google Scholar 

  29. M. Karg, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. von Klitzing, S. Wellert, T. Hellweg, Langmuir 24, 6300–6306 (2008)

    Article  Google Scholar 

  30. J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298–310 (1996)

    Article  Google Scholar 

  31. V.W.A. de Villeneuve, R.P.A. Dullens, D.G.A.L. Aarts, E. Groeneveld, J.H. Scherff, W.K. Kegel, H.N.W. Lekkerkerker, Science 309, 1231–1233 (2005)

    Article  ADS  Google Scholar 

  32. J.M. Meijer, V.W.A. de Villeneuve, A.V. Petukhov, Langmuir 23, 3554–3560 (2007)

    Article  Google Scholar 

  33. D.L.M. Verwijmeren, Synthesis of fluorescent PNIPAm. Master Thesis, Utrecht University, 2012

    Google Scholar 

  34. R. Higler, J. Appel, J. Sprakel, Soft Matter 9, 5372–5379 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is the result of collaborations with many people. First and foremost Jan Hilhorst is thanked for many useful discussions, experimental support and for providing the PNIPAm-AAc particles. Daan Verwijmeren is thanked for his obtained insight into the PNIPAm synthesis and Cesare Benedetti is thanked for performing the experiments and acquiring the data for Figs. 4.4, 4.5, 4.6, 4.7 and 4.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne-Mieke Meijer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meijer, JM. (2015). Inducing Defects in Colloidal Crystals with Thermosensitive PNIPAm Particles. In: Colloidal Crystals of Spheres and Cubes in Real and Reciprocal Space. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-14809-0_4

Download citation

Publish with us

Policies and ethics