Skip to main content

On the Estimation of Convergence Times to Invariant Sets in Convex Polytopic Uncertain Systems

  • Conference paper
Artificial Life and Computational Intelligence (ACALCI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8955))

Abstract

In this paper, we first provide a mathematical description and proof for the robust stability of systems with convex polytopic uncertainty through the construction of attractive invariant sets. Then, we present the problem of estimating the convergence time to arbitrarily tight over-approximations of an invariant set, from both a known initial condition and for initial conditions belonging to a convex polytopic set. We then propose various analytical and numerical methods for computing the aforementioned convergence time. Finally, a number of numerical examples, including a flexible link robotic manipulator, are given to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  2. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  3. Battacharyya, S., Chapellat, H., Keel, L.: Robust Control: The Parametric Approach. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  4. Apkarian, P., Gahinet, P., Becker, G.: Self-scheduled H  ∞  control of linear parameter-varying systems: a design example. Automatica 31(9), 1251–1261 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daafouz, J., Bernussou, J.: Parameter dependent Lyapunov function for discrete time systems with time varying parametric uncertainties. Systems and Control Letters 43, 355–359 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Oliveira, M., Bernussou, J., Geromel, J.: A new discrete-time robust stability condition. Systems and Control Letters 37, 261–265 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blanchini, F.: Set invariance in control. Automatica 35, 1747–1767 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)

    MATH  Google Scholar 

  9. Haimovich, H., Seron, M.: Bounds and invariant sets for a class of discrete-time switching systems with perturbations. International Journal of Control (2013), doi:10.1080/00207179.2013.834536 (published online: September 13, 2013)

    Google Scholar 

  10. Olaru, S., De Doná, J.A., Seron, M.M., Stoican, F.: Positive invariant sets for fault tolerant multisensor control schemes. International Journal of Control 83(12), 2622–2640 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Seron, M.M., De Doná, J.A., Olaru, S.: Fault tolerant control allowing sensor healthy-to-faulty and faulty-to-healthy transitions. IEEE Transactions on Automatic Control 77(7), 1657–1669 (2012)

    Article  Google Scholar 

  12. Franklin, G., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  13. Veberic, D.: Having fun with Lambert W(x) function, CoRR, vol. abs/1003.1628 (2010), http://arxiv.org/abs/1003.1628

  14. Veberic, D.: Lambert W function for applications in Physics. Computer Physics Communications 183(12), 2622–2628 (2012), http://www.sciencedirect.com/science/article/pii/S0010465512002366

    Article  MathSciNet  Google Scholar 

  15. Houari, A.: Additional applications of the Lambert W function in Physics. European Journal of Physics 34(3), 695 (2013), http://stacks.iop.org/0143-0807/34/i=3/a=695

    Article  Google Scholar 

  16. Banwell, T.: Bipolar transistor circuit analysis using the Lambert W-function. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47(11), 1621–1633 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hwang, C., Cheng, Y.-C.: Use of Lambert W function to stability analysis of time-delay systems. In: Proceedings of the 2005 American Control Conference, vol. 6, pp. 4283–4288 (June 2005)

    Google Scholar 

  18. Sira-Ramírez, H., Castro-Linares, R.: Sliding mode rest-to-rest stabilization and trajectory tracking for a discretized flexible joint manipulator. Dynamics and Control 10(1), 87–105 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

McCloy, R.J., De Doná, J.A., Seron, M.M. (2015). On the Estimation of Convergence Times to Invariant Sets in Convex Polytopic Uncertain Systems. In: Chalup, S.K., Blair, A.D., Randall, M. (eds) Artificial Life and Computational Intelligence. ACALCI 2015. Lecture Notes in Computer Science(), vol 8955. Springer, Cham. https://doi.org/10.1007/978-3-319-14803-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14803-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14802-1

  • Online ISBN: 978-3-319-14803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics