Skip to main content

The Effect of Reactant and Product Selection Strategies on Cycle Evolution in an Artificial Chemistry

  • Conference paper
  • 1637 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8955))

Abstract

The molecules within an Artificial Chemistry form an evolutionary system, capable under certain conditions of displaying interesting emergent behaviours. We investigate experimentally the effect on emergence of the combinations of selected strategies for choosing reactants (Uniform and Kinetic selection) and products (Uniform and Least Energy selection) as measured by three measures of reaction cycle formation. Emergence is maximised by a Kinetic reactant selection strategy; the choice of product selection strategy has minimal effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. Journal of Chemical Information and Computer Sciences 43(4), 1085–1093 (2003), http://pubs.acs.org/doi/abs/10.1021/ci0200570 , PMID: 12870897

  2. Benkö, G., Flamm, C., Stadler, P.F.: The toychem package: A computational toolkit implementing a realistic artificial chemistry model (2005), http://www.tbi.univie.ac.at/~xtof/ToyChem/

  3. Channon, A.: Unbounded evolutionary dynamics in a system of agents that actively process and transform their environment. Genetic Programming and Evolvable Machines 7(3), 253–281 (2006), doi:10.1007/s10710-006-9009-3

    Article  Google Scholar 

  4. Daylight Chemical Information Systems, Inc. Daylight theory manual (2011), http://www.daylight.com/dayhtml/doc/theory/index.html

  5. Dorin, A., Korb, K.B.: Building virtual ecosystems from artificial chemistry. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 103–112. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Faulconbridge, A.: RBN-World: sub-symbolic artificial chemistry for artificial life. Ph.D. thesis, University of York (2011)

    Google Scholar 

  7. Flamm, C., Ullrich, A., Ekker, H., Mann, M., Hogerl, D., Rohrschneider, M., Sauer, S., Scheuermann, G., Klemm, K., Hofacker, I., Stadler, P.: Evolution of metabolic networks: a computational frame-work. Journal of Systems Chemistry 1(1), 4 (2010), http://www.jsystchem.com/content/1/1/4

    Article  Google Scholar 

  8. Fontana, W., Wagner, G.P., Buss, L.W.: Beyond digital naturalism. Artificial Life 1(2), 211–227 (1994)

    Google Scholar 

  9. Hickinbotham, S., Clark, E., Stepney, S., Clarke, T., Nellis, A., Pay, M., Young, P.: Molecular microprograms. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part I. LNCS, vol. 5777, pp. 297–304. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-21283-3_37

    Chapter  Google Scholar 

  10. Högerl, D.: Simulation of prebiotic chemistries. Master’s thesis, Institute for Theoretical Chemistry, University of Vienna (2010)

    Google Scholar 

  11. Hutton, T.J.: Evolvable self-replicating molecules in an artificial chemistry. Artificial Life 8(4), 341–356 (2002), http://www.sq3.org.uk/Evolution/Squirm3/EvSelfReps/

    Article  MathSciNet  Google Scholar 

  12. Hutton, T.J.: The organic builder: A public experiment in artificial chemistries and self-replication. Artificial Life 15(1), 21–28 (2009), http://dx.doi.org/10.1162/artl.2009.15.1.15102 (October 9, 2012)

  13. Landrum, G.: Rdkit: Open-source cheminformatics (2013), http://www.rdkit.org

  14. Lucht, M.W.: Size selection and adaptive evolution in an artificial chemistry. Artificial Life 18(2), 143–163 (2012)

    Article  Google Scholar 

  15. Madina, D., Ono, N., Ikegami, T.: Cellular evolution in a 3D lattice artificial chemistry. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 59–68. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Maley, C.: Four steps toward open-ended evolution. In: GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1336–1343. Morgan Kaufmann (1999)

    Google Scholar 

  17. Ono, N., Ikegami, T.: Self-maintenance and self-reproduction in an abstract cell model. Journal of Theoretical Biology 206(2), 243–253 (2000), http://www.sciencedirect.com/science/article/pii/S0022519300921210

    Article  Google Scholar 

  18. Steel, M., Hordijk, W., Smith, J.: Minimal autocatalytic networks. Journal of Theoretical Biology 332(0), 96–107 (2013), http://www.sciencedirect.com/science/article/pii/S0022519313002002

    Article  MathSciNet  Google Scholar 

  19. Suzuki, K., Ikegami, T.: Shapes and self-movement in protocell systems. Artificial Life 15(1), 59–70 (2008), http://dx.doi.org/10.1162/artl.2009.15.1.15104 (October 9, 2012)

  20. Ullrich, A., Flamm, C., Rohrschneider, M., Stadler, P.F.: In silico evolution of early metabolism. In: Fellermann, H., Dorr, M., Hanczyc, M., Laursen, L.L., Maurer, S., Merkle, D., Monnard, P.A., Sta, Y.K., Rasmussen, S. (eds.) Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems (Artificial Life XII), The MIT Press, Cambridge (2010)

    Google Scholar 

  21. Varela, F.G., Maturana, H.R., Uribe, R.: Autopoiesis: The organization of living systems, its characterization and a model. Biosystems 5(4), 187–196 (1974)

    Article  Google Scholar 

  22. Young, T.J., Neshatian, K.: A constructive artificial chemistry to explore open-ended evolution. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS, vol. 8272, pp. 228–233. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Young, T.J., Neshatian, K. (2015). The Effect of Reactant and Product Selection Strategies on Cycle Evolution in an Artificial Chemistry. In: Chalup, S.K., Blair, A.D., Randall, M. (eds) Artificial Life and Computational Intelligence. ACALCI 2015. Lecture Notes in Computer Science(), vol 8955. Springer, Cham. https://doi.org/10.1007/978-3-319-14803-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14803-8_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14802-1

  • Online ISBN: 978-3-319-14803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics