Skip to main content

Evolving Unipolar Memristor Spiking Neural Networks

  • Conference paper
Artificial Life and Computational Intelligence (ACALCI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8955))

Abstract

Neuromorphic computing — brainlike computing in hardware — typically requires myriad CMOS spiking neurons interconnected by a dense mesh of nanoscale plastic synapses. Memristors are frequently cited as strong synapse candidates due to their statefulness and potential for low-power implementations. To date, plentiful research has focused on the bipolar memristor synapse, which is capable of incremental weight alterations and can provide adaptive self-organisation under a Hebbian learning scheme. In this paper we consider the Unipolar memristor synapse — a device capable of switching between only two states (conductive and resistive) through application of a suitable input voltage — and discuss its suitability for neuromorphic systems. A self-adaptive evolutionary process is used to autonomously find highly fit network configurations. Experimentation on a dynamic-reward scenario shows that unipolar memristor networks evolve task-solving controllers faster than both generic bipolar memristor networks and networks containing nonplastic connections whilst performing comparably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afifi, A., Ayatollahi, A., Raissi, F.: Stdp implementation using memristive nanodevice in cmos-nano neuromorphic networks. IEICE Electronics Express 6(3), 148–153 (2009)

    Article  Google Scholar 

  2. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosc. 77(1), 551–555 (1998)

    Google Scholar 

  3. Blynel, J., Floreano, D.: Exploring the T-maze: Evolving learning-like robot behaviors using cTRNNs. In: Raidl, G.R., et al. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 593–604. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Chua, L.: Memristor-the missing circuit element. IEEE Transactions on Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  5. Doolittle, W., Calley, W., Henderson, W.: Complementary oxide memristor technology facilitating both inhibitory and excitatory synapses for potential neuromorphic computing applications. In: International Semiconductor Device Research Symposium, ISDRS 2009, pp. 1–2 (2009)

    Google Scholar 

  6. Erokhin, V., Fontana, M.P.: Electrochemically controlled polymeric device: a memristor (and more) found two years ago. ArXiv e-prints (Jul 2008)

    Google Scholar 

  7. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evolutionary Intelligence 1, 47–62 (2008)

    Article  Google Scholar 

  8. Gerstner, W., Kistler, W.: Spiking Neuron Models - Single Neurons, Populations, Plasticity. Cambridge University Press (2002)

    Google Scholar 

  9. Hebb, D.O.: The organisation of behavior. Wiley, New York (1949)

    Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117(4), 500 (1952)

    Article  Google Scholar 

  11. Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  12. Howard, G.D., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A.: Evolution of plastic learning in spiking networks via memristive connections. IEEE Transactions on Evolutionary Computing (2012) (in press)

    Google Scholar 

  13. Linares-Barranco, B., Serrano-Gotarredona, T.: Memristance can explain spike-time- dependent-plasticity in neural synapses. Available from Nature Preceedings (2009), http://hdl.handle.net/10101/npre.2009.3010.1

  14. Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  15. Michel, O.: Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

    Google Scholar 

  16. Nolfi, S., Floriano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Rabaey, J.M.: Digital integrated circuits: a design perspective. Prentice-Hall, Inc., Upper Saddle River (1996)

    Google Scholar 

  18. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog (1973)

    Google Scholar 

  19. Rocha, M., Cortez, P.C., Neves, J.: Evolutionary neural network learning. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 24–28. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Snider, G.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE International Symposium on Nanoscale Architectures, NANOARCH 2008, pp. 85–92 (June 2008)

    Google Scholar 

  21. Soltoggio, A.: Neural plasticity and minimal topologies for reward-based learning. In: Proceedings of the 2008 8th International Conference on Hybrid Intelligent Systems, pp. 637–642. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  22. Soltoggio, A., Bullinaria, J.A., Mattiussi, C., Dürr, P., Floreano, D.: Evolutionary Advantages of Neuromodulated Plasticity in Dynamic, Reward- based Scenarios. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Proceedings of the 11th International Conference on Artificial Life (Alife XI), pp. 569–576. MIT Press, Cambridge (2008)

    Google Scholar 

  23. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  24. Sun, X., Li, G., Ding, L., Yang, N., Zhang, W.: Unipolar memristors enable stateful logic operations via material implication. Applied Physics Letters 99(7), 72101–72101 (2011)

    Article  Google Scholar 

  25. Urzelai, J., Floreano, D.: Evolution of adaptive synapses: Robots with fast adaptive behavior in new environments. Evol. Comput. 9, 495–524 (2001), http://dx.doi.org/10.1162/10636560152642887

    Article  Google Scholar 

  26. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nature Materials 6(11), 833–840 (2007)

    Article  Google Scholar 

  27. Xia, G., Tang, Z., Li, Y., Wang, J.: A binary hopfield neural network with hysteresis for large crossbar packet-switches. Neurocomputing 67, 417–425 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Howard, D., Bull, L., de Lacy Costello, B. (2015). Evolving Unipolar Memristor Spiking Neural Networks. In: Chalup, S.K., Blair, A.D., Randall, M. (eds) Artificial Life and Computational Intelligence. ACALCI 2015. Lecture Notes in Computer Science(), vol 8955. Springer, Cham. https://doi.org/10.1007/978-3-319-14803-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14803-8_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14802-1

  • Online ISBN: 978-3-319-14803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics