Skip to main content

Computational Understanding and Manipulation of Symmetries

  • Conference paper
Artificial Life and Computational Intelligence (ACALCI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8955))

  • 1640 Accesses

Abstract

For natural and artificial systems with some symmetry structure, computational understanding and manipulation can be achieved without learning by exploiting the algebraic structure. This algebraic coordinatization is based on a hierarchical (de)composition method. Here we describe this method and apply it to permutation puzzles. Coordinatization yields a structural understanding, not just solutions for the puzzles. In the case of the Rubik’s Cubes, different solving strategies correspond to different decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kaufmann (2004)

    Google Scholar 

  2. Cameron, P.J.: Permutation Groups. London Mathematical Society (1999)

    Google Scholar 

  3. Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer (1996)

    Google Scholar 

  4. Egri-Nagy, A., Nehaniv, C.L., Rhodes, J.L., Schilstra, M.J.: Automatic analysis of computation in biochemical reactions. BioSystems 94(1-2), 126–134 (2008)

    Article  Google Scholar 

  5. Egri-Nagy, A., Mitchell, J.D., Nehaniv, C.L.: SgpDec: Cascade (De)Compositions of finite transformation semigroups and permutation groups. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 75–82. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Egri-Nagy, A., Nehaniv, C.L.: Algebraic Hierarchical Decomposition of Finite State Automata: Comparison of Implementations for Krohn-Rhodes Theory. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 315–316. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Egri-Nagy, A., Nehaniv, C.L., Mitchell, J.D.: SgpDec – software package for hierarchical decompositions and coordinate systems, Version 0.7+ (2013), http://sgpdec.sf.net

  8. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press (1976)

    Google Scholar 

  9. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books (2003)

    Google Scholar 

  10. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.5 (2014), http://www.gap-system.org

  11. Goguen, J.: An introduction to algebraic semiotics, with application to user interface design. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 242–291. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Goguen, J.A., Malcolm, G.: Software Engineering with OBJ: Algebraic Specification in Action. Springer (2000)

    Google Scholar 

  13. Hall, M.: The Theory of Groups. The Macmillan Company, New York (1959)

    Google Scholar 

  14. Holcombe, W.M.L.: Algebraic Automata Theory. Cambridge University Press (1982)

    Google Scholar 

  15. Jones, H.F.: Group Theory, Representations and Physics. Adam Hilger (1990)

    Google Scholar 

  16. Joyner, D.: Adventures in Group Theory. John Hopkins University Press (2002)

    Google Scholar 

  17. Krohn, K., Rhodes, J.L., Tilson, B.R.: The prime decomposition theorem of the algebraic theory of machines. In: Arbib, M.A. (ed.) Algebraic Theory of Machines, Languages, and Semigroups, ch. 5, pp. 81–125. Academic Press (1968)

    Google Scholar 

  18. Laird, J., Newell, A., Rosenbloom, P.: SOAR: An architecture for general intelligence. Artificial Intelligence 33(1), 1–64 (1987)

    Article  MathSciNet  Google Scholar 

  19. Li, S.Y.W., Blandford, A., Cairns, P., Young, R.M.: Post-completion errors in problem solving. In: Proceedings of the Twenty-Seventh Annual Conference of the Cognitive Science Society, Hillsdale, NJ, Lawrence Erlbaum Associates (2005)

    Google Scholar 

  20. Nehaniv, C.L.: Algebraic models for understanding: Coordinate systems and cognitive empowerment. In: Proc. Second International Conference on Cognitive Technology: Humanizing the Information Age, pp. 147–162. IEEE Computer Society Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  21. Nehaniv, C.L.: Algebra and formal models of understanding. In: Ito, M. (ed.) Semigroups, Formal Languages and Computer Systems, vol. 960, pp. 145–154. Kyoto Research Institute for Mathematics Sciences, RIMS Kokyuroku (1996)

    Google Scholar 

  22. Newell, A.: Unified Theories of Cognition. Harvard University Press (1990)

    Google Scholar 

  23. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer (2000)

    Google Scholar 

  24. Raman, K.V.: Group Theory and Its Applications to Chemistry. Tata McGraw-Hill (2004)

    Google Scholar 

  25. Reder, L.M., Schunn, C.D.: Metacognition does not imply awareness: Strategy choice is governed by implicit learning and memory. In: Reder, L.M. (ed.) Implicit Memory and Metacognition. Erlbaum, Hillsdale (1996)

    Google Scholar 

  26. Rhodes, J.: Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games. World Scientific Press (2009), Foreword by Hirsch, M.W. edited by Nehaniv, C.L. (Original version: University of California at Berkeley, Mathematics Library, 1971)

    Google Scholar 

  27. Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer (1995)

    Google Scholar 

  28. Wiggs, C.C., Taylor, C.J.: Mechanical puzzle marketed as Rubik’s Clock. Patent EP0322085 (1989)

    Google Scholar 

  29. Zhang, J., Norman, D.A.: A representational analysis of numeration systems. Cognition 57, 271–295 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Egri-Nagy, A., Nehaniv, C.L. (2015). Computational Understanding and Manipulation of Symmetries. In: Chalup, S.K., Blair, A.D., Randall, M. (eds) Artificial Life and Computational Intelligence. ACALCI 2015. Lecture Notes in Computer Science(), vol 8955. Springer, Cham. https://doi.org/10.1007/978-3-319-14803-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14803-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14802-1

  • Online ISBN: 978-3-319-14803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics