Skip to main content

Electroluminescent Thin Film Phosphors

  • Chapter
  • First Online:
Thin Film Structures in Energy Applications

Abstract

In the later part of the twentieth century, classic cathode ray tubes (CRTs) are replaced by flat panel displays (FPDs) with a thinner, smaller size and with a significant reduction in power consumption. Such displays are currently used in several applications including mobile phones, laptops, and televisions. Among other FPDs, electroluminescent displays perform better than its counterparts such as liquid crystal, field emission, and plasma displays. Electroluminescent (EL) display is a common term for devices such as light-emitting diodes (LEDs), powder phosphor devices, thin film, and thick dielectric electroluminescent devices. Thin film EL devices (TFEL) show advantages such as quick response, high resolution, wide viewing angles and wide operating temperatures and so on. TFEL displays are all solid state and based on electroluminescence in which luminescent material gives light under high electric field.

Phosphors act as luminescent materials both in powder as well as in thin film forms in these devices. ZnS doped with Mn is one of the earliest and still in use electroluminescent phosphor. Monochrome display was developed using ZnS:Mn sandwiched between single or double multi-stack dielectric layers. An efficient yellow emission was generated when a high voltage was applied between front indium tin oxide (ITO) and rear aluminium (Al) electrodes. Multiple color displays were then achieved by combination of different rare earth-doped ZnS layers emitting different colors. Similar displays were developed more efficiently with other materials. Mostly oxides, sulphides, and fluorides are highly preferred host for such phosphors because of wider bandgap that allows the transmission of visible light. Oxides have been found to have more stability compared to sulphides which suffer degradation under high electron bombardment due to sulphur depletion.

TFEL phosphors have been grown by physical vapour deposition techniques such as pulsed laser deposition, sputtering, and chemical reaction techniques such as spray pyrolysis, chemical vapour deposition, sol–gel process followed by spraying, dipping, or spinning. Over the years, extensive research has been carried out to develop multi-color TFEL devices using combination of red, green, blue emitting phosphors. Optimum growth techniques, dopant concentration, choice of rare earths, and hosts have been investigated and led to the production of efficient, high luminance display devices. This chapter introduces basics of phosphors, minimum requirements to be an efficient phosphor, different fabrication techniques, and a review of different color electroluminescent phosphors for display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting. Ann. Rev. Mater. Res. 43, 481–501 (2013)

    Article  Google Scholar 

  2. M. Leskela, Rare earths in electroluminescent and field emission display phosphors. J. Alloys Compd. 275–277, 702–708 (1998)

    Article  Google Scholar 

  3. T. Justel, H. Nikol, C. Ronda, New developments in the field of luminescent materials for lighting and displays. Angew. Chem. Int. Ed. 37, 3084–3103 (1998)

    Article  Google Scholar 

  4. A. Lakshmanan, Luminescence and Display Phosphors: Phenomena and Applications (Nova Science, New York, 2008)

    Google Scholar 

  5. S.L. Jones, D. Kumar, K.-G. Cho, R. Singh, P.H. Holloway, Pulsed laser deposition of Y2O3:Eu thin film phosphors. Displays 19(4), 151–167 (1999)

    Article  Google Scholar 

  6. R. Mirhosseini, M.F. Schubert, S. Chhajed, J. Cho, J.K. Kim, E. Fred Schuber, Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions. Opt. Express 17(13), 10806–108013 (2009)

    Article  Google Scholar 

  7. N.T. Tran, J.P. You, F.G. Shi, Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED. J. Lightwave Tech. 27(22), 5145 (2009)

    Article  Google Scholar 

  8. N.T. Gurin, A.V. Shlyapin, O.Y. Sabitov, Quantum yield and luminous efficacy of thin-film ZnS electroluminescent emitters. Tech. Phys. 48(4), 479–491 (2003). Translated from ZhurnalTekhnichesko Ï Fiziki 73(4), 100–112, 2003

    Article  Google Scholar 

  9. N. Narendran, N. Maliyagoda, L. Deng, R. Pysar, Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources. SPIE Proc. 4445 (2001). 137–147

    Google Scholar 

  10. P.H. Holloway, T.A. Trottier, J. Sebastian, S. Jones, X.-M. Zhang, J.-S. Bang, B. Abrams, W.J. Thomes, T.-J. Kim, Degradation of field emission display phosphors. J. Appl. Phys. 88(1), 483–488 (2000)

    Article  Google Scholar 

  11. H.C. Swart, J.S. Sebastian, T.A. Trottier, S.L. Jones, P.H. Holloway, Degradation of zinc sulfide phosphors under electron bombardment. J. Vac. Sci. Technol. A 14(3), 1697–1703 (1996)

    Article  Google Scholar 

  12. K.T. Hillie, H.C. Swart, Electron beam induced degradation of a pulsed laser deposited ZnS:Cu, Au, Al thin film on a Si (1 0 0) substrate. Appl. Surf. Sci. 183(3–4), 304–310 (2001)

    Article  Google Scholar 

  13. H. Schwarz, H.A. Tourtellotte, Vacuum deposition by high-energy laser with emphasis on barium titanate films. J. Vac. Sci. Technol. 6, 373 (1969)

    Article  Google Scholar 

  14. H.M. Christen, G. Eres, Recent advances in pulsed-laser deposition of complex oxides. J. Phys. Condens. Matter 20(26), 264005 (2008)

    Article  Google Scholar 

  15. J.Y. Choe, S.M. Blomquist, D.C. Morton, Characteristics of SrS:Cu thin-film electroluminescent device fabricated by pulsed-laser deposition. Appl. Phys. Lett. 80(22), 4124–4126 (2002)

    Article  Google Scholar 

  16. H.M. Manasevit, W.I. Simpson, The use of metal-organic in the preparation of semiconductor materials. J. Electrochem. Soc. 118(4), 645 (1971)

    Article  Google Scholar 

  17. R. Hiskes, RP. Helbing, SA. DiCarolis, Growth of Electroluminescent Phosphors by MOCVD, Patent Number 5942284, 1999

    Google Scholar 

  18. W.R. Grove, On the electro-chemical polarity of gases. Phil. Trans. R. Soc. 142, 87–101 (1852)

    Article  Google Scholar 

  19. L. Filipovic, S. Selberherr, G. Mutinati, E. Brunet, S. Steinhauer, A. Kock, J. Teva, J. Kraft, J. Siegert, F. Schrank, Modeling spray pyrolysis deposition, in Proceedings of the world congress on engineering, vol. II (WCE, London, 2013), ISBN: 978-988-1952-8-2

    Google Scholar 

  20. D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005)

    Article  Google Scholar 

  21. F. Ozutok, K. Erturk, V. Bilgin, Growth, electrical and optical study of ZnS:Mn thin films. Proceedings of the international congress on advances in applied physics and materials science. Acta Phys. Polonica A 121(1), 221–223 (2012)

    Google Scholar 

  22. G. Destriau, Recherchessur les scintillations des sulfures de zinc aux rayons. J. Chim. Phys. 33, 587–625 (1936)

    Google Scholar 

  23. N.A. Vlasenko, Y.U. Popkov, A study of electroluminescence of a sublimated ZnS-Mn phosphor. Opt. Spectrosk. 8, 81 (1960)

    Google Scholar 

  24. H. Ohnishi, Electroluminescent display materials. Ann. Rev. Mater. Sci. 19, 83–101 (1989)

    Article  Google Scholar 

  25. A.N. Krasnov, Electroluminescent displays: history and lessons learned. Displays 24, 73–79 (2003)

    Article  Google Scholar 

  26. C.N. King, Electroluminescent displays. J. Vac. Sci. Technol. A 14, 1729 (1996)

    Article  Google Scholar 

  27. R. T. Tuenge, J. Kane, Bright red EL using a thin-film filter, Digest of 1991 SID International Symposium, 279–281 (1991)

    Google Scholar 

  28. D. Poelman, R. Vercaemst, R.L. Van Meirhaeghe, W.H. Laflkre, F. Cardon, Influence of the growth conditions on the properties of CaS:Eu electroluminescent thin films. J. Lumin. 75, 175–181 (1997)

    Article  Google Scholar 

  29. J.E. Van Haecke, P.F. Smet, D. Poelman, The influence of source powder composition on the electroluminescence of Ca1−xSrxS:Eu thin films. Spectrochim. Acta B Atom. Spectr. 59(10–11), 1759–1764 (2004)

    Article  Google Scholar 

  30. T. Miyata, T. Nakatani, T. Minami, Gallium oxide as host material for multicolor emitting phosphors. J. Lumin. 87–89, 1183–1185 (2000)

    Article  Google Scholar 

  31. A.H. Kitai, Oxide phosphor and dielectric thin films for electroluminescent devices. Thin Solid Films 445, 367–376 (2003)

    Article  Google Scholar 

  32. A.H. Kitai, Luminescent Materials and Applications (Wiley, Chichester, 2008)

    Book  Google Scholar 

  33. P. Wellenius, A. Suresh, J.F. Muth, Bright, low voltage europium doped gallium oxide thin film electroluminescent devices. Appl. Phys. Lett. 92, 021111 (2008)

    Article  Google Scholar 

  34. P. Wellenius, E.R. Smith, S.M. LeBoeuf, H.O. Everitt, J.F. Muth, Optimal composition of europium gallium oxide thin films for device applications. J. Appl. Phys. 107, 103111–103111-5 (2010)

    Article  Google Scholar 

  35. W.-M. Li, M. Ritala, M. Leskela, R. Lappalainen, J. Jokinen, E. Soininen, B. Hüttl, E. Nykänen, L. Niinisto, Elemental characterization of electroluminescent SrS:Ce thin films. J. Appl. Phys. 84(2), 1029–1035 (1998)

    Article  Google Scholar 

  36. K.W. Barth, J.E. Lau, G.G. Peterson, D. Endisch, A.E. Kaloyeros, R.T. Tuenge, C.N. King, Metallorganic chemical vapor deposition of SrS:Ce for thin film electroluminescent device applications. J. Electrochem. Soc. 147(6), 2174–2180 (2000)

    Article  Google Scholar 

  37. S.-S. Sun, A new blue emitting TFEL phosphor: SrS:Cu. Displays 19, 145–149 (1999)

    Article  Google Scholar 

  38. P. Benalloul, C. Bat-thou, J. Benoit, L. Eichenauer, A. Zeinerta, HA-Ill & ternary compounds: new host matrices for full color thin film electroluminescence displays. Appl. Phys. Lett. 63, 1954 (1993)

    Article  Google Scholar 

  39. Y. Inoue, I. Tanaka, K. Tanaka, Y. Izumi, S. Okamoto, M. Kawanishi, D. Barada, N. Miura, H. Matsumoto, R. Nakano, Atomic composition and structural properties of blue emitting BaAl2S4:Eu electroluminescent thin films. Jpn. J. Appl. Phys. 40, 2451–2455 (2001)

    Article  Google Scholar 

  40. S. Shionoya, W.M. Yen, Phosphor Handbook (CRC, Boca Raton, 1999)

    Google Scholar 

  41. H. Kasano, K. Megumi, H. Yamamoto, Cathodoluminescence of Ca1 − xMgxS: A (A = Eu or Ce). J. Electrochem. Soc. 131(8), 1953–1960 (1984)

    Article  Google Scholar 

  42. Philippe SMET, Study of BaAl2S4:Eu and SrS:Cu,Ag as blue emitting materials for thin film electroluminescence, Ph.D. Dissertation, Universiteit Gent, 2005

    Google Scholar 

  43. P.C. Donohue, J.E. Hanlon, The synthesis and photoluminescence of MnM:n(S, Se). J. Electrochem. Soc. 121, 137 (1974)

    Article  Google Scholar 

  44. N. Miura, M. Kawanishi, H. Matsumoto, R. Nakano, High-luminance blue-emitting BaAl2S4:Eu thin-film electroluminescent devices. Jpn. J. Appl. Phys. 38, L1291–L1292 (1999)

    Article  Google Scholar 

  45. X. Wu, A. Nakua, D. Cheong, Color-by-blue: a novel method to achieve full-color inorganic EL displays. J. Soc. Inf. Disp. 12, 281–286 (2004)

    Article  Google Scholar 

  46. R. Yu, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, H.S. Lee, S.S. Yi, Enhanced photoluminescence of BaAl2S4:Eu2+ phosphor by Mg2+ ions doping. Ceram. Int. 39(8), 9709–9713 (2013)

    Article  Google Scholar 

  47. Y.A. Ono, Materials for full-color electroluminescent displays. Ann. Rev. Mater. Sci. 27, 283–303 (1997)

    Article  Google Scholar 

  48. T. Minami, T. Maeno, Y. Kuroi, S. Takata, High-luminance green-emitting thin-film electroluminescent devices using ZnGa2O4:Mn phosphor. Jpn. J. Appl. Phys. 34, L684–L687 (1995)

    Article  Google Scholar 

  49. G. Anoop, K. Mini Krishna, M.K. Jayaraj, Photoluminescent studies in co-sputtered ZnGa2O4:Mn phosphor thin films, in Proceedings of ASID, New Delhi, 2006, pp. 280–282

    Google Scholar 

  50. K. Tanaka, S. Okamoto, Green electroluminescence of EuGa2S4 thin films. Appl. Phys. Lett. 83, 647 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Paul David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

David, S.P., Gaume, R. (2015). Electroluminescent Thin Film Phosphors. In: Babu Krishna Moorthy, S. (eds) Thin Film Structures in Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-14774-1_8

Download citation

Publish with us

Policies and ethics