Skip to main content

Coatings for Energy Applications

  • Chapter
  • First Online:
Book cover Thin Film Structures in Energy Applications
  • 1609 Accesses

Abstract

This chapter aims at providing an understanding about the potential applications of various types of coatings in energy sector. As the energy demands are growing day by day, there is need of enhancing the efficiency of energy systems, which can be enhanced using the advanced coatings. This chapter summarizes about the application of thin films and thick coatings of conventional/nanomaterials in both renewable and non-renewable energy sectors. A comparison between the efficiencies of systems with and without coatings has also been addressed. The importance and challenges associated with adding nanomaterials like carbon nanotubes (CNT), graphene, and various nanostructures with conventional coating material have also been discussed. This chapter can lead to better fundamental understanding about the coatings, which ensures new designs, high efficiency, and large application of coatings in energy sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Ozturk, A. Acaravci, The causal relationship between energy consumption and GDP in Albania, Bulgaria, Hungary and Romania: evidence from ARDL bound testing approach. Appl. Energy 87(6), 1938–1943 (2010)

    Article  Google Scholar 

  2. G. Barat, Liquid biofuels potential and outlook in Iran. Renew. Sustain. Energy Rev. 16, 4379–4384 (2012)

    Article  Google Scholar 

  3. L.E. Chaar, L.A. Lamont, N.E. Zein, Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 2165–2175 (2011)

    Article  Google Scholar 

  4. A. Evans, A.B. Hütter, L.M. Rupp, L.J. Gauckler, Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194, 119–129 (2009)

    Article  Google Scholar 

  5. T. Osaka, H. Nara, T. Momma, T. Yokoshima, New Si–O–C composite film anode materials for LIB by electro deposition. J. Mater. Chem. A 2, 883–896 (2014)

    Article  Google Scholar 

  6. S. Vepek, The search for novel and super hard materials. J. Vac. Sci. Technol. A 17, 2401–2420 (1999)

    Article  Google Scholar 

  7. Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 94(26), 263118 (2009)

    Article  Google Scholar 

  8. H. Tan, R. Santbergen, H.M. Smets, M. Zeman, Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12, 4070–4076 (2012)

    Article  Google Scholar 

  9. T.T. Wu, F. Hu, J.H. Huang, C. Chang, C.C. Lai, Y. Yen, H. Huang, H. Hong, Z.M. Wang, C. Shen, J. Shieh, Y. Chueh, Improved efficiency of a large-area Cu(In, Ga)Se2 solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process. ACS Appl. Mater. Interfaces 6(7), 4842–4849 (2014)

    Article  Google Scholar 

  10. Y. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, W.P. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 8(5), 1501–1505 (2008)

    Article  Google Scholar 

  11. S.C. Singhal, Advances in solid oxide fuel cell technology. Solid State Ion. 135(1–4), 305–313 (2000)

    Article  Google Scholar 

  12. Z. Hu, K. Zhang, H. Gao, W. Duan, F. Cheng, J. Liang, J. Chen, Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries. J. Mater. Chem. A 1, 12650 (2013)

    Article  Google Scholar 

  13. Z. Huang, B. Zhang, S. Oh, Q. Zheng, X. Lin, N. Yousefi, J. Kim, Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J. Mater. Chem. 22, 3591–3599 (2012)

    Article  Google Scholar 

  14. C. Ning, L.M. Yan, Z.W. Dong, Fouling and corrosion properties of SiO2 coatings on copper in geothermal water. Ind. Eng. Chem. Res. 51, 6001–6017 (2012)

    Article  Google Scholar 

  15. F.P. Moreno, M.A. Jakab, N. Tailleart, M. Goldman, J.R. Scully, Corrosion-resistant metallic coatings. Mater. Today 11(10), 14–23 (2008)

    Article  Google Scholar 

  16. A. Salam, Y. Alsabagh, W. Tiu, Y. Xu, M.S. Virk, A review of the effects of ice accretion on the structural behaviour of wind turbines. Wind Eng. 37(1), 59–70 (2013)

    Article  Google Scholar 

  17. N. Dalili, A review of surface engineering issues critical to wind turbine performance. Renew. Sustain. Energy Rev. 13, 428–438 (2009)

    Article  Google Scholar 

  18. E. Korkut, M. Atlar, An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers. Ocean Eng. 41, 1–12 (2012)

    Article  Google Scholar 

  19. S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014)

    Article  Google Scholar 

  20. R. Urteaga, L.N. Acquaroli, R.R. Koropecki, A. Santos, M. Alba, J. Pallares, L.F. Marsal, A. Berli, Optofluidic characterization of nanoporous membranes. Langmuir 29, 2784–2789 (2013)

    Article  Google Scholar 

  21. D. Lee, Y. Kanai, Role of four-fold coordinated titanium and quantum confinement in CO2 reduction at titania surface. J. Am. Chem. Soc. 134, 20266–20269 (2012)

    Article  Google Scholar 

  22. H. Sevincli, T. Lehmann, D.A. Ryndyk, G. Cuniberti, Comparison of electron and phonon transport in disordered semiconductor carbon nanotubes. J. Comput. Electron 12, 685–691 (2013)

    Article  Google Scholar 

  23. P. Chakraborty, M.R. Zachariah, Do nanoenergetic particles remain nano-sized during combustion. Combust. Flame 161, 1408–1416 (2014)

    Article  Google Scholar 

  24. J. Tao, M. Yang, J.W. Chai, J.S. Pan, Y.P. Feng, S.J. Wang, Atomic N modified rutile TiO2 (110) surface layer with significant visible light photoactivity. J. Phys. Chem. C 118, 994–1000 (2014)

    Article  Google Scholar 

  25. B. Dobosz, R. Krzyminiewski, G. Schroeder, J. Kurczewska, Electron paramagnetic resonance as an effective method for a characterization of functionalized iron oxide. J. Phys. Chem. Solids 75, 594–598 (2014)

    Article  Google Scholar 

  26. T. Kushida, S. Tanaka, C. Morita, T. Tanji, Y. Ohshita, Mapping of minority carrier lifetime distributions in multicrystalline silicon using transient electron-beam-induced current. J. Electron Microsc. 61(5), 293–298 (2012)

    Article  Google Scholar 

  27. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4(6), 2979–2993 (2010)

    Article  Google Scholar 

  28. D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, J.S. Harris, High-efficiency nanostructured window GaAs solar cells. Nano Lett. 13, 4850–4856 (2013)

    Article  Google Scholar 

  29. D. Deng, M.G. Kim, J.Y. Lee, J. Cho, Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2, 818–837 (2009)

    Article  Google Scholar 

  30. A.K. Keshri, A. Agarwal, Wear behavior of plasma-sprayed carbon nanotube-reinforced aluminum oxide coating in marine and high-temperature environments. J. Therm. Spray Technol. 20(6), 1217–1230 (2011)

    Article  Google Scholar 

  31. K. Cheng, E. Yang, C.Y. Lee, Z. Ricks, V. Palmre, K. Kim, Fine-Tuned Polymer Nano-Composite Coatings for Use in Geothermal Plants, in ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, vol. 1 (2011), pp. 713–719

    Google Scholar 

  32. Z. Chai, Q. Suo, H. Wang, X. Wang, Mesoporous lanthanum phosphate nanostructures containing H3PO4 as superior electrolyte for PEM fuel cells. RSC Adv. 3, 21928 (2013)

    Article  Google Scholar 

  33. M.P. Finnegan, H. Zhang, J.F. Banfield, Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J. Phys. Chem. C 111, 1962–1968 (2007)

    Article  Google Scholar 

  34. M.J. Yacamán, J.A. Ascencio, H.B. Liu, J. Torresdey, Structure shape and stability of nanometric sized particles. J. Vac. Sci. Technol. B 19, 1071–1023 (2001)

    Article  Google Scholar 

  35. Y. Song, S.S.R. Kumar, J. Hormes, Synthesis of palladium nanoparticles using a continuous flow polymeric micro reactor. J. Nanosci. Nanotechnol. 4(7), 788–793 (2004)

    Article  Google Scholar 

  36. D.R. Baer, J.E. Amonette, M.H. Engelhard, D.J. Gaspar, A.S. Karakoti, S. Kuchibhatla, P. Nachimuthu, J.T. Nurmi, Y. Qiang, V. Sarathy, S. Seal, A. Sharma, P.G. Tratnyek, C.M. Wang, Characterization challenges for nanomaterials. Surf. Interface Anal. 40, 529–537 (2008)

    Article  Google Scholar 

  37. S. Kar, S. Chaudhuri, Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process. J. Phys. Chem. B 110(10), 4542–4547 (2006)

    Article  Google Scholar 

  38. D. Lundina, K. Sarakinos, An introduction to thin film processing using high-power impulse magnetron sputtering. J. Mater. Res. 27(5), 780–792 (2012)

    Article  Google Scholar 

  39. K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater. Sci. 48, 57–170 (2003)

    Article  Google Scholar 

  40. K. Niessen, M. Gindrat, Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase. J. Therm. Spray Technol. 20(4), 736–743 (2011)

    Article  Google Scholar 

  41. S. Olson, K. Hummler, B. Sapp, Challenges in Thin Wafer Handling and Processing, in IEEE (2013), pp. 62–65

    Google Scholar 

  42. K. Kim, Ultrathin organic solar cells with graphene doped by ferroelectric polarization. ACS Appl. Mater. Interfaces 6, 3299–3304 (2014)

    Article  Google Scholar 

  43. H. Li, X. Liu, B. Yang, P. Wang, Influence of substrate bias and post-deposition Cl treatment on CdTe film grown by RF magnetron sputtering for solar cells. RSC Adv. 4, 5046 (2014)

    Article  Google Scholar 

  44. H. Bi, W. Zhao, S. Sun, H. Cui, T. Lin, F. Huang, X. Xie, M. Jiang, Graphene films decorated with metal sulfide nanoparticles for use as counter electrodes of dye-sensitized solar cells. Carbon 61, 116–123 (2013)

    Article  Google Scholar 

  45. C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, M. Jiang, Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 1, 770 (2013)

    Article  Google Scholar 

  46. C. Li, J. Xia, Q. Wang, J. Chen, C. Li, W. Lei, X. Zhang, Photovoltaic property of a vertically aligned carbon nanotube hexagonal network assembled with CdS quantum dots. ACS Appl. Mater. Interfaces 5, 7400–7404 (2013)

    Article  Google Scholar 

  47. T. Matsui, M. Kondo, Advanced materials processing for high-efficiency thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 119, 156–162 (2013)

    Article  Google Scholar 

  48. T. Kobayashi, T. Kumazawa, Z.J. Kao, T. Nakada, Cu(In, Ga)Se2 thin film solar cells with a combined ALD-Zn(O, S) buffer and MOCVD-ZnO:B window layers. Sol. Energy Mater. Sol. Cells 119, 129–133 (2013)

    Article  Google Scholar 

  49. S.Y. Myong, L.S. Jeon, Improved light trapping in thin-film silicon solar cells via alternated n-type silicon oxide reflectors. Sol. Energy Mater. Sol. Cells 119, 77–83 (2013)

    Article  Google Scholar 

  50. J.W. Lee, B. Ye, D. Kim, J.K. Kim, J. Heo, H.Y. Jeong, M. Kim, W. Choi, J.M. Baik, ZnO nanowire-based antireflective coatings with double-nanotextured surfaces. ACS Appl. Mater. Interfaces 6, 1375–1379 (2014)

    Article  Google Scholar 

  51. S. Hsu, C. Tsai, C. Lu, Y. Tsai, T. Huang, Y. Jhang, Y. Chen, C. Wua, Y. Chen, Nanoporous platinum counter electrodes by glancing angle deposition for dye-sensitized solar cells. Org. Electron 13, 856–863 (2012)

    Article  Google Scholar 

  52. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  53. Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42, 3127 (2013)

    Article  Google Scholar 

  54. P. Arunkumar, M. Meena, K. Suresh Babu, A review on cerium oxide-based electrolytes for ITSOFC. Nanomater. Energy 1, 288–305 (2012)

    Google Scholar 

  55. S.C. Hamm, S. Basuray, S. Mukherjee, S. Sengupta, J.C. Mathai, G.A. Baker, S. Gangopadhyay, Ionic conductivity enhancement of sputtered gold nanoparticle-in-ionic liquid electrolytes. J. Mater. Chem. A 2, 792 (2014)

    Article  Google Scholar 

  56. N.N. Kariuki, W.J. Khudhayer, T. Karabacak, D.J. Myers, GLAD Pt–Ni alloy nanorods for oxygen reduction reaction. ACS Catal. 3, 3123–3132 (2013)

    Article  Google Scholar 

  57. M.N. Banis, S. Sun, X. Meng, Y. Zhang, Z. Wang, R. Li, M. Cai, T.K. Sham, X. Sun, TiSi2Ox coated N-doped carbon nanotubes as Pt catalyst support for the oxygen reduction reaction in PEMFCs. J. Phys. Chem. C 117, 15457–15467 (2013)

    Article  Google Scholar 

  58. J. Ma, Y. Sahai, Effect of electrode fabrication method and substrate material on performance of alkaline fuel cells. Electrochem. Commun. 30, 63–66 (2013)

    Article  Google Scholar 

  59. C. Zhang, J. Hu, X. Wang, X. Zhang, H. Toyoda, M. Nagatsu, Y. Meng, High performance of carbon nanowall supported Pt catalyst for methanol electro-oxidation. Carbon 50, 3731–3738 (2012)

    Article  Google Scholar 

  60. Y.S. Hong, H.H. Yoon, Preparation of scandia-stabilized zirconia electrolyte thin films for intermediate temperature-solid oxide fuel cells by electron beam vapor deposition, Jpn. J. Appl. Phys. 50, 01BE091–01BE095 (2011)

    Google Scholar 

  61. D. Virbukas, G. Laukaitis, J. Dudonis, D. Milčius, The properties of scandium and cerium stabilized zirconium thin films formed by e-beam technique. Solid State Ion. 188, 46–49 (2011)

    Article  Google Scholar 

  62. S. Kim, Y. Lee, G.M. Choi, Electrical conductivity of Gd-doped ceria film at low temperatures (300–500°C). Solid State Ion 262, 411–415 (2014)

    Article  Google Scholar 

  63. M.H. Wu, J.L. Huang, K.Z. Fung, D.F. Lii, Application of samaria doped sculptured ceria/La1-xSrxCo1-yFeyO3-δ in cathode of SOFCs at intermediate temperature. Vacuum 101, 57–62 (2014)

    Article  Google Scholar 

  64. B. Li, Y. Wang, H. Rong, Y. Wang, J. Liu, L. Xing, M. Xu, L. Weishan, A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. J. Mater. Chem. A 1, 12954–12961 (2013)

    Article  Google Scholar 

  65. S. Goriparti, E. Miele, F. Angelis, E. Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)

    Article  Google Scholar 

  66. X. Sun, C. Zhou, M. Xie, H. Sun, T. Hu, F. Lu, S.M. Scott, S.M. George, J. Lian, Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. J. Mater. Chem. A 2, 7319 (2014)

    Article  Google Scholar 

  67. X. Wang, Z. Zhang, Y. Chen, Y. Qu, Y. Lai, J. Li, Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties. J. Alloys Compd. 600, 84–90 (2014)

    Article  Google Scholar 

  68. J. Qin, C. He, N. Zhao, Z. Wang, C. Shi, E. Liu, J. Li, Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano 8(2), 1728–1738 (2014)

    Article  Google Scholar 

  69. J. Ren, C. Wang, Q. Wu, X. Liu, Y. Yang, L. He, W. Zhang, A silicon nanowire–reduced graphene oxide composite as a high-performance lithium ion battery anode material. Nanoscale 6, 3353 (2014)

    Article  Google Scholar 

  70. C. Jin, X. Zhang, W. He, Y. Wang, H. Li, Z. Wang, Z. Bi, Effect of ion doping on the electrochemical performances of LiFePO4–Li3V2(PO4)3 composite cathode materials. RSC Adv. 4, 15332 (2014)

    Article  Google Scholar 

  71. C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 12, 1152–1156 (2012)

    Article  Google Scholar 

  72. G. Lota, F. Krzysztof, E. Frackowiak, Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci. 4, 1592–1605 (2011)

    Article  Google Scholar 

  73. M. Ghaffari, S. Kosolwattana, Y. Zhou, N. Lachman, M. Lin, D. Bhattacharya, K.K. Gleason, B.L. Wardle, Q.M. Zhang, Hybrid supercapacitor materials from poly(3,4-ethylenedioxythiophene) conformally coated aligned carbon nanotubes. Electrochim. Acta 112, 522–528 (2013)

    Article  Google Scholar 

  74. R. Warren, F. Sammoura, A. Kozinda, L. Lin, ALD Ruthenium Oxide-Carbon Nanotube Electrodes for Supercapacitor Applications, in Proceedings of 27th IEEE Micro Electro Mechanical Systems Conference (2014), pp. 167–170

    Google Scholar 

  75. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010)

    Article  Google Scholar 

  76. W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, H.N. Alshareef, High-performance nanostructured supercapacitors on a sponge. Nano Lett. 11, 5165–5172 (2011)

    Article  Google Scholar 

  77. M.S. Yang, X. Liu, J. Fan, X. He, S. Shi, G. Fu, M. Wang, S. Chen, Microstructure and wear behaviours of laser clad NiCr/Cr3C2–WS2 high temperature self-lubricating wear-resistant composite coating. Appl. Surf. Sci. 258, 3757–3762 (2012)

    Article  Google Scholar 

  78. N. Jegadeeswaran, M.R. Ramesh, S. Prakrathi, K.U. Bhat, Hot corrosion behaviour of HVOF sprayed stellite-6 coatings on gas turbine alloys. Trans. Indian Inst. Metals 67(1), 87–93 (2014)

    Article  Google Scholar 

  79. C. Zhou, N. Wang, Z. Wang, S. Gong, H. Xu, Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating. Scr. Mater. 51, 945–948 (2004)

    Article  Google Scholar 

  80. R.S. Lima, B.R. Marple, Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Mater. Sci. Eng. A 485, 182 (2008)

    Article  Google Scholar 

  81. A. Afrasiabi, A. Kobayashi, Hot corrosion control in plasma sprayed YSZ coating by alumina layer with evaluation of microstrcuture and nanoindentation data (H, E). Vacuum 88, 103–107 (2013)

    Article  Google Scholar 

  82. E. Garcia, P. Miranzo, M.I. Osendi, The prospect of Y2SiO5-based materials as protective layer in environmental barrier coatings. J. Therm. Spray Technol. 22(5), 680 (2013)

    Article  Google Scholar 

  83. F. Sevillano, P. Poza, C.J. Munez, S. Vezzu, S. Rech, A. Trentin, Cold-sprayed Ni-Al2O3 coatings for applications in power generation industry. J. Therm. Spray Technol. 22(5), 772–782 (2013)

    Article  Google Scholar 

  84. R. Vert, P. Carles, E. Laborde, G. Mariaux, E. Meillot, A. Vardelle, Adhesion of ceramic coating on thin and smooth metal substrate: a novel approach with a nanostructured ceramic interlayer. J. Therm. Spray Technol. 21(6), 1128–1134 (2012)

    Article  Google Scholar 

  85. X. He, J. Song, H. Xia, J. Tan, B. Zhang, Z. He, X. Zhou, Z. Zhu, M. Zhao, X. Liu, L. Xu, S. Bai, Direct characterization of ion implanted pyrolytic carbon coatings deposited from natural gas. Carbon 68, 95–103 (2014)

    Article  Google Scholar 

  86. M. Susoff, K. Siegmann, C. Pfaffenroth, M. Hirayama, Evaluation of icephobic coatings – screening of different coatings and influence of roughness. Appl. Surf. Sci. 282, 870–879 (2013)

    Article  Google Scholar 

  87. P. Kim, T.S. Wong, J. Alvarenga, M.J. Kreder, W.E. Martinez, J. Aizenberg, Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6(8), 6569–6577 (2012)

    Article  Google Scholar 

  88. S.A. Muboyadzhyan, Erosion-resistant coatings for gas turbine compressor blades. Russ. Metall. 6(3), 183–196 (2009)

    Article  Google Scholar 

  89. F. Mubarok, S. Armada, I. Fagoaga, N. Espallarga, Thermally sprayed sic coatings for offshore wind turbine bearing applications. J. Therm. Spray Technol. 22(8), 1303–1309 (2013)

    Article  Google Scholar 

  90. R.S. Bunker, The Effect of Thermal Barrier Coating Roughness Magnitude on Heat Transfer with and Without Flow Path Surface Steps, in International Mechanical Engineering Congress and Exposition (2003), doi:10.1115/IMECE2003-41073

  91. B.S. Mann, V. Arya, B.K. Pant, High-power diode laser surface treated HVOF coating to combat high energy particle impact wear. J. Mater. Eng. Perform. 22(7), 1995–2004 (2013)

    Article  Google Scholar 

  92. D.K. Goyal, H. Singh, H. Kumar, V. Sahni, Slurry erosive wear evaluation of HVOF-spray Cr2O3 coating on some turbine steels. J. Therm. Spray Technol. 21(5), 838–851 (2012)

    Article  Google Scholar 

  93. G.G. Wang, L.Q. Zhu, H.C. Liu, W.P. Li, Galvanic corrosion of Ni–Cu–Al composite coating and its anti-fouling property for metal pipeline in simulated geothermal water. Surf. Coat. Technol. 206, 3728–3732 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Keshri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keshri, A.K., Sribalaji, M. (2015). Coatings for Energy Applications. In: Babu Krishna Moorthy, S. (eds) Thin Film Structures in Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-14774-1_2

Download citation

Publish with us

Policies and ethics