Advertisement

Gauge Theory

  • Stephen Bruce Sontz
Part of the Universitext book series (UTX)

Abstract

If this were a novel, then this chapter would be the climax of the story, because here we present the now-legendary result identifying the gauge fields of physics theory with the principal bundles that have a connection of mathematical theory. But in science the story continues and continues. And to this day we do not know how it will end.

Bibliography

  1. 10.
    W. Drechsler and M.E. Mayer, Fiber Bundle Techniques in Gauge Theory, Lecture Notes in Physics, Vol. 67, Springer, 1977.Google Scholar
  2. 11.
    C. Ehresmann, Les connexiones infinitésimales dans un espace fibré différentiable, in: Colloque de topologie, Bruxelles (1950), pp. 29–55, Masson, Paris, 1951.Google Scholar
  3. 20.
    B.C. Hall, Lie Groups, Lie Algebras, and Representations, Springer, 2003.Google Scholar
  4. 24.
    G. ’t Hooft, Gauge theories of the forces between elementary particles, Sci. Am. 243 (1980) 104–138.Google Scholar
  5. 25.
    G. ’t Hooft editor, 50 Years of Yang–Mills Theory, World Scientific, 2005.Google Scholar
  6. 34.
    E. Lubkin, Ann. Phys. (N.Y.) 23 (1963) 233.Google Scholar
  7. 41.
    L. O’Raifeartaigh, The Dawning of Gauge Theory, Princeton University Press, 1997.Google Scholar
  8. 42.
    R. Penrose, The Road to Reality, Knopf, 2005.Google Scholar
  9. 48.
    R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101 (1956) 1597–1607.MathSciNetCrossRefGoogle Scholar
  10. 50.
    S. Weinberg, The Quantum Theory of Fields, Vol. II, Modern Applications, Cambridge University Press, 1996.CrossRefGoogle Scholar
  11. 51.
    H. Weyl, Gravitation und Elektrizität, Sitz. König. Preuss. Akad. Wiss. 26 (1918) 465–480.zbMATHGoogle Scholar
  12. 53.
    T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys. B 107 (1976) 365–380.MathSciNetCrossRefGoogle Scholar
  13. 54.
    C.N. Yang and R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191–195.MathSciNetCrossRefGoogle Scholar
  14. 55.
    D.Z. Zhang, C.N. Yang and contemporary mathematics, Math. Intelligencer 15, no. 4, (1993) 13–21.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stephen Bruce Sontz
    • 1
  1. 1.Centro de Investigación en Matemáticas, A.C.GuanajuatoMexico

Personalised recommendations