Skip to main content

Motion of a Body Immersed in a Stokes Fluid

  • Chapter
  • First Online:
Mathematical Models of Viscous Friction

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2135))

  • 1272 Accesses

Abstract

In this chapter we study the unsteady motion of a sphere immersed in a Stokes fluid, that is a linear approximation of a fluid governed by the Navier–Stokes equation. The equation of motion for the sphere leads to an integro-differential equation, and we are interested in the asymptotic behavior in time of the solution. We show that the velocity of the sphere slows down in time with an algebraic law, due to the memory effect of the surrounding fluid. We discuss the case of a sphere moving on a straight line, or executing a rotary motion around a fixed axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basset, A.B.: A Treatise on Hydrodynamics, vol. 2. Dover, New York (1961). Reprint of the 1888 edition

    Google Scholar 

  2. Belmonte, A., Jacobsen, J., Jayaraman, A.: Monotone solutions of a nonautonomous differential equation for a sedimenting sphere. Electron. J. Differ. Equ. 2001(62), 1–17 (2001)

    MathSciNet  Google Scholar 

  3. Cavallaro, G., Marchioro, C.: On the approach to equilibrium for a pendulum immersed in a stokes fluid. Math. Models Methods Appl. Sci. 20, 1999–2019 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cavallaro, G., Marchioro, C., Tsuji, T.: Approach to equilibrium of a rotating sphere in a Stokes flow. Ann. Univ. Ferrara Sez VII Sci. Mat. 57, 211–228 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daitche, A.: Advection of inertial particles in the presence of the history force: higher order numerical schemes. J. Comput. Phys. 254, 93–106 (2013)

    Article  MathSciNet  Google Scholar 

  6. Daitche, A., Tél, T.: Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107, 244501 (2011)

    Article  Google Scholar 

  7. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 653–791. North-Holland, Amsterdam (2002)

    Google Scholar 

  8. Galdi, G.P., Rannacher, R.: Fundamental Trends in Fluid-Structure Interaction. Series on Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications, vol. I. World Scientific, Hackensack (2010)

    Google Scholar 

  9. Gautschi, W.: Error function and fresnel integrals. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992). Reprint of the 1972 edition

    Google Scholar 

  10. Lamb, H.: Hydrodynamics. Dover, New York (1945). Reprint of 1932 edition

    Google Scholar 

  11. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics, vol. 6. Pergamon, London (1959)

    Google Scholar 

  12. Stokes, G.G.: On the effect of the internal friction of fluids on the motion of a pendulum. Trans. Camb. Philos. Soc. 9, 8–106 (1851)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

4.1.1 Derivation of the Equation for Rectilinear Motion

We start from the drag on a sphere executing translatory oscillations, which is [11],

$$\displaystyle{ -F_{\omega } = 6\pi \mu R\left (1 + \frac{R} {\delta } \right )U + 3\pi R^{2}\sqrt{\frac{2\mu \rho _{f } } {\omega }} \left (1 + \frac{2R} {9\delta } \right )\frac{\mathrm{d}U} {\mathrm{d}t} \;, }$$
(4.46)

where \(U = U_{0}\mathrm{e}^{-\mathrm{i}\omega t}\) and \(\delta = \sqrt{2\nu /\omega }\), being \(\nu =\mu /\rho _{f}\) the kinematic viscosity. Clearly we perform all the computations in complex notation, and at the end we consider the real part. For ω = 0 this becomes Stokes formula.

To obtain the drag on a sphere moving in an arbitrary manner U(t), we represent it as a Fourier integral,

$$\displaystyle{ U(t) =\int _{ -\infty }^{\infty }\!\mathrm{d}\omega \;U_{\omega }\mathrm{e}^{-\mathrm{i}\omega t}\;,\qquad \qquad U_{\omega } = \frac{1} {2\pi }\int _{-\infty }^{\infty }\!\mathrm{d}\tau \;U(\tau )\mathrm{e}^{\mathrm{i}\omega \tau }\;. }$$
(4.47)

Since the equations are linear, the total drag may be written as the integral of the drag forces for velocities which are the separate Fourier components U ω e−iω t; these forces are given by (4.46), precisely,

$$\displaystyle{ \pi \rho _{f}R^{3}U_{\omega }\mathrm{e}^{-\mathrm{i}\omega t}\left ( \frac{6\nu } {R^{2}} -\frac{2\mathrm{i}\omega } {3} + \frac{3\sqrt{2\nu }} {R} (1 -\mathrm{i})\sqrt{\omega }\right )\;. }$$
(4.48)

Noticing that \((\mathit{dU}/\mathit{dt})_{\omega } = -\mathrm{i}\omega U_{\omega }\), we can rewrite this as

$$\displaystyle{ \pi \rho _{f}R^{3}\mathrm{e}^{-\mathrm{i}\omega t}\left ( \frac{6\nu } {R^{2}}U_{\omega } + \frac{2} {3}(\dot{U})_{\omega } + \frac{3\sqrt{2\nu }} {R} (\dot{U})_{\omega }\frac{1 + \mathrm{i}} {\sqrt{\omega }} \right )\;. }$$
(4.49)

By integration over ω, the first and second terms give respectively U(t) and \(\dot{U}(t)\). To integrate the third term, we notice first of all that for negative ω this term must be written in the complex conjugate form, \((1 + \mathrm{i})/\sqrt{\omega }\) being replaced by \((1 -\mathrm{i})/\sqrt{\vert \omega \vert }\); this is because Eq. (4.46) was derived for a velocity \(U = U_{0}\mathrm{e}^{-\mathrm{i}\omega t}\) with ω > 0, and for a velocity U 0eiω t we obtain the complex conjugate. Therefore, the integration with respect to ω over \(\mathbb{R}\) equals twice the real part of the integration restricted on \(\mathbb{R}_{+}\); moreover

$$\displaystyle{\begin{array}{ll} 2\,\text{Re}\left \{(1 + \mathrm{i})\int _{0}^{\infty }\!\mathrm{d}\omega \;\frac{(\dot{U})_{\omega }\mathrm{e}^{-\mathrm{i}\omega t}} {\sqrt{\omega }} \right \}& = \frac{1} {\pi } \,\text{Re}\left \{(1 + \mathrm{i})\int _{-\infty }^{\infty }\int _{ 0}^{\infty }\!\mathrm{d}\omega \,\mathrm{d}\tau \;\frac{\dot{U}(\tau )\mathrm{e}^{\mathrm{i}\omega (\tau -t)}} {\sqrt{\omega }} \right \} \\ & = \frac{1} {\pi } \text{Re}\left \{(1 + \mathrm{i})\int _{-\infty }^{t}\int _{ 0}^{\infty }\!\mathrm{d}\omega \,\mathrm{d}\tau \;\frac{\dot{U}(\tau )\mathrm{e}^{-\mathrm{i}\omega (t-\tau )}} {\sqrt{\omega }} \right. \\ &\quad \left.+\,(1 + \mathrm{i})\int _{t}^{\infty }\int _{0}^{\infty }\!\mathrm{d}\omega \,\mathrm{d}\tau \;\frac{\dot{U}(\tau )\mathrm{e}^{\mathrm{i}\omega (\tau -t)}} {\sqrt{\omega }} \right \} \\ & = \sqrt{\frac{2} {\pi }} \text{Re}\left \{\int _{-\infty }^{t}\!\mathrm{d}\tau \; \frac{\dot{U}(\tau )} {\sqrt{t-\tau }} + \mathrm{i}\int _{t}^{\infty }\!\mathrm{d}\tau \; \frac{\dot{U}(\tau )} {\sqrt{\tau -t}}\right \} \\ & = \sqrt{\frac{2} {\pi }} \int _{-\infty }^{t}\!\mathrm{d}\tau \; \frac{\dot{U}(\tau )} {\sqrt{t-\tau }}\;. \end{array} }$$

Thus, we have finally for the drag,

$$\displaystyle{ F_{\mathrm{drag}} = -2\pi \rho _{f}R^{3}\left (\frac{1} {3} \frac{\mathrm{d}U} {\mathrm{d}t} + \frac{3\nu U} {R^{2}} + \frac{3} {R}\sqrt{\frac{\nu } {\pi }}\int _{-\infty }^{t}\!\mathrm{d}\tau \;\frac{\mathrm{d}U} {\mathrm{d}\tau } \frac{1} {\sqrt{t-\tau }}\right )\;, }$$
(4.50)

which is (4.10).

4.1.2 Derivation of the Equation for Rotary Motion

The total moment may be written as the integral of the moments for angular velocities which are the separate Fourier components \(\varOmega _{\omega }\mathrm{e}^{-\mathrm{i}\omega t}\), expressed by (4.21). The single moment is therefore

$$\displaystyle{ M_{\omega } = -\frac{8\pi } {3}\mu R^{3}\varOmega _{ \omega }\mathrm{e}^{-\mathrm{i}\omega t}\left [3 + \frac{2\alpha ^{2}\omega \left [\alpha \sqrt{\omega }-\mathrm{i}(\alpha \sqrt{\omega } + 1)\right ]} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega } \right ]\;, }$$
(4.51)

and since \((\dot{\varOmega })_{\omega } = -\mathrm{i}\omega \varOmega _{\omega }\), we can rewrite this as,

$$\displaystyle\begin{array}{rcl} M_{\omega }& =& -\frac{8\pi } {3}\mu R^{3}\mathrm{e}^{-\mathrm{i}\omega t}\left [3\varOmega _{\omega } + \frac{(\dot{\varOmega })_{\omega }} {-\mathrm{i}\omega } \frac{2\alpha ^{2}\omega \left [\alpha \sqrt{\omega }-\mathrm{i}(\alpha \sqrt{\omega } + 1)\right ]} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega } \right ] \\ & =& -\frac{8\pi } {3}\mu R^{3}\mathrm{e}^{-\mathrm{i}\omega t}\left [3\varOmega _{\omega } + (\dot{\varOmega })_{\omega }\frac{2\alpha ^{2}\left [\alpha \sqrt{\omega } + 1 + \mathrm{i}\alpha \sqrt{\omega }\right ]} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega } \right ]\;.{}\end{array}$$
(4.52)

By integration over ω, the first term gives \(-(8\pi \mu R^{3})\varOmega (t)\). To integrate the second term, we notice first of all that for negative ω this term must be written in the complex conjugate form (and replacing ω → | ω | ), because (4.21) was derived for an angular velocity \(\varOmega _{0}\mathrm{e}^{-\mathrm{i}\omega t}\) with ω > 0, and for an angular velocity \(\varOmega _{0}\mathrm{e}^{\mathrm{i}\omega t}\) we obtain the complex conjugate. Therefore, the integration with respect to ω over \(\mathbb{R}\) equals twice the real part of the integration restricted on \(\mathbb{R}_{+}\). We then compute,

$$\displaystyle\begin{array}{rcl} K&:=& 2\,\text{Re}\left \{\int _{0}^{\infty }\!\mathrm{d}\omega \;(\dot{\varOmega })_{\omega }\mathrm{e}^{-\mathrm{i}\omega t} \frac{\alpha \sqrt{\omega } + 1 + \mathrm{i}\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right \} {}\\ & =& \frac{1} {\pi } \text{Re}\left \{\int _{-\infty }^{\infty }\int _{ 0}^{\infty }\!\mathrm{d}\omega \,\mathrm{d}\tau \;\dot{\varOmega }(\tau )\mathrm{e}^{\mathrm{i}\omega (\tau -t)} \frac{\alpha \sqrt{\omega } + 1 + \mathrm{i}\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right \} {}\\ & =& \frac{1} {\pi } \text{Re}\left \{\int _{-\infty }^{t}\int _{ 0}^{\infty }\!\mathrm{d}\omega \,\mathrm{d}\tau \;\dot{\varOmega }(\tau )\mathrm{e}^{\mathrm{i}\omega (\tau -t)} \frac{\alpha \sqrt{\omega } + 1 + \mathrm{i}\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right. {}\\ & & +\left.\int _{t}^{\infty }\int _{ 0}^{\infty }\!\mathrm{d}\omega \,\mathrm{d}\tau \;\dot{\varOmega }(\tau )\mathrm{e}^{\mathrm{i}\omega (\tau -t)} \frac{\alpha \sqrt{\omega } + 1 + \mathrm{i}\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right \}\;. {}\\ \end{array}$$

Defining now, for any \(t \in \mathbb{R}\),

$$\displaystyle\begin{array}{rcl} F(t)& =& \int _{0}^{\infty }\!\mathrm{d}\omega \;\cos \left (\omega t\right ) \frac{\alpha \sqrt{\omega } + 1} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega } \\ & & +\int _{0}^{\infty }\!\mathrm{d}\omega \;\sin \left (\omega t\right ) \frac{\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\;,{}\end{array}$$
(4.53)

the quantity K can be expressed as follows,

$$\displaystyle\begin{array}{rcl} K& =& \frac{1} {\pi } \text{Re}\left \{\int _{-\infty }^{t}\!\mathrm{d}\tau \;\dot{\varOmega }(\tau )\left [\int _{ 0}^{\infty }\!\mathrm{d}\omega \;\cos \big(\omega (t-\tau )\big) \frac{\alpha \sqrt{\omega } + 1} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right.\right. {}\\ & & \left.+\int _{0}^{\infty }\!\mathrm{d}\omega \;\sin \big(\omega (t-\tau )\big) \frac{\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right ] {}\\ & & +\,\mathrm{i}\int _{-\infty }^{t}\!\mathrm{d}\tau \;\dot{\varOmega }(\tau )\left [\int _{ 0}^{\infty }\!\mathrm{d}\omega \;\cos \big(\omega (t-\tau )\big) \frac{\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right. {}\\ & & \left.+\int _{0}^{\infty }\!\mathrm{d}\omega \;\sin \big(\omega (t-\tau )\big) \frac{-(\alpha \sqrt{\omega } + 1)} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right ] {}\\ & & +\int _{t}^{\infty }\!\mathrm{d}\tau \;\dot{\varOmega }(\tau )\left [\int _{ 0}^{\infty }\!\mathrm{d}\omega \;\cos \big(\omega (\tau -t)\big) \frac{\alpha \sqrt{\omega } + 1} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right. {}\\ & & \left.-\int _{0}^{\infty }\!\mathrm{d}\omega \;\sin \big(\omega (\tau -t)\big) \frac{\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right ] {}\\ & & +\,\mathrm{i}\int _{t}^{\infty }\!\mathrm{d}\tau \;\dot{\varOmega }(\tau )\left [\int _{ 0}^{\infty }\!\mathrm{d}\omega \;\cos \big(\omega (\tau -t)\big) \frac{\alpha \sqrt{\omega }} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right. {}\\ & & \left.\left.+\int _{0}^{\infty }\!\mathrm{d}\omega \;\sin \big(\omega (\tau -t)\big) \frac{\alpha \sqrt{\omega } + 1} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\right ]\right \} {}\\ & =& \frac{1} {\pi } \int _{-\infty }^{t}\!\mathrm{d}\tau \;\dot{\varOmega }(\tau )F(t-\tau ) + \frac{1} {\pi } \int _{t}^{\infty }\!\mathrm{d}\tau \;\dot{\varOmega }(\tau )F(t-\tau )\;. {}\\ \end{array}$$

Therefore, the total moment of the forces exerted by the fluid on a sphere rotating with an arbitrary angular velocity, Ω(t), is

$$\displaystyle{ M = -8\pi \mu R^{3}\left (\varOmega (t) + \frac{2\alpha ^{2}} {3\pi } \int _{-\infty }^{t}\!\mathrm{d}\tau \;\dot{\varOmega }(\tau )F(t-\tau )\right )\;. }$$
(4.54)

4.1.3 Computation of F(t)

We want to show that the function F(t) expressed in (4.53) is equal, for t > 0, to

$$\displaystyle{ F(t) = \frac{\sqrt{\pi }} {\sqrt{2t}} - \frac{\pi } {2}\mathrm{e}^{t/2}\,\text{Erfc}\sqrt{ \frac{t} {2}}\;, }$$
(4.55)

and it is zero for t < 0. Let us compute first

$$\displaystyle{ \int _{0}^{\infty }\!\mathrm{d}\omega \;\cos \left (\omega t\right ) \frac{\alpha \sqrt{\omega } + 1} {1 + 2\alpha \sqrt{\omega } + 2\alpha ^{2}\omega }\;, }$$
(4.56)

which is clearly an even function of t, so in the sequel we consider t > 0. By the change of variable ω = x 2, and putting equal 1 the irrelevant parameter α, (4.56) becomes

$$\displaystyle{ \int _{0}^{\infty }\!\mathrm{d}x\;\cos \left (x^{2}t\right ) \frac{2x^{2} + 2x} {1 + 2x + 2x^{2}}\;. }$$
(4.57)

In order to evaluate this integral, we consider the contour \(\mathcal{C}\) of the complex plane defined as follows:

$$\displaystyle\begin{array}{rcl} \mathcal{C}& =& \left \{z \in \mathbb{C}: 0 \leq \text{Re}(z) \leq R,\,\,\text{Im}(z) = 0\right \} \cup \left \{z \in \mathbb{C}: z = R\mathrm{e}^{i\theta },\,\,0 \leq \theta \leq \frac{\pi } {4}\right \} \\ & & \cup \left \{z \in \mathbb{C}: z = r\mathrm{e}^{\mathrm{i}t/4},\,\,0 \leq r \leq R\right \} = \mathcal{C}_{ 1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}\;, {}\end{array}$$
(4.58)

where R is a fixed positive real number. By the Cauchy theorem we have

$$\displaystyle{ \oint _{\mathcal{C}}\!\mathrm{d}z\;\mathrm{e}^{\mathrm{i}tz^{2} } \frac{2z^{2} + 2z} {1 + 2z + 2z^{2}} = 0\;, }$$
(4.59)

which splits into the integrals over \(\mathcal{C}_{1}\), \(\mathcal{C}_{2}\), and \(\mathcal{C}_{3}\). It is not difficult to see that the integral over \(\mathcal{C}_{2}\) goes to zero when R → , so we have

$$\displaystyle{ \int _{0}^{\infty }\!\mathrm{d}x\;\mathrm{e}^{\mathrm{i}tx^{2} } \frac{2x^{2} + 2x} {1 + 2x + 2x^{2}} =\int _{ 0}^{\infty }\!\mathrm{d}r\;\mathrm{e}^{\mathrm{i}tr^{2}\mathrm{e}^{\mathrm{i}t/2} } \frac{2\left (r\mathrm{e}^{\mathrm{i}t/4}\right )^{2} + 2r\mathrm{e}^{\mathrm{i}t/4}} {1 + 2r\mathrm{e}^{\mathrm{i}t/4} + 2\left (r\mathrm{e}^{\mathrm{i}t/4}\right )^{2}}\mathrm{e}^{\mathrm{i}t/4}\;, }$$
(4.60)

and the integral we are interested in, (4.57), coincides with the real part of (4.60). After some elementary algebra and taking the real part of (4.60), we arrive at

$$\displaystyle\begin{array}{rcl} \int _{0}^{\infty }\!\mathrm{d}x\;\cos \left (x^{2}t\right ) \frac{2x^{2} + 2x} {1 + 2x + 2x^{2}}& =& \int _{0}^{\infty }\!\mathrm{d}r\;\mathrm{e}^{-tr^{2} } \frac{\sqrt{2}r^{2}} {1 + 2r^{2}} \\ & =& \frac{\sqrt{2\pi }} {4\sqrt{t}} - \frac{\pi } {4}\mathrm{e}^{t/2}\text{Erfc}\sqrt{ \frac{t} {2}}.{}\end{array}$$
(4.61)

For the other integral constituting F(t) in (4.53) we have, by the same technique, for t > 0,

$$\displaystyle{ \int _{0}^{\infty }\!\mathrm{d}\omega \;\sin \left (\omega t\right ) \frac{\sqrt{\omega }} {1 + 2\sqrt{\omega } + 2\omega } = \frac{\sqrt{2\pi }} {4\sqrt{t}} - \frac{\pi } {4}\mathrm{e}^{t/2}\text{Erfc}\sqrt{ \frac{t} {2}}\;, }$$
(4.62)

hence exactly the same expression obtained before, while for t < 0, since sin(ω t) is odd, we get a cancellation and so F(t) = 0.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buttà, P., Cavallaro, G., Marchioro, C. (2015). Motion of a Body Immersed in a Stokes Fluid. In: Mathematical Models of Viscous Friction. Lecture Notes in Mathematics, vol 2135. Springer, Cham. https://doi.org/10.1007/978-3-319-14759-8_4

Download citation

Publish with us

Policies and ethics