Skip to main content

Standard Methods in Fractional Variational Calculus

  • Chapter
  • First Online:
Advanced Methods in the Fractional Calculus of Variations

Abstract

We investigate the problem of finding an admissible function giving a minimum value to an integral functional that depends on an unknown function (or functions) of one or several variables and its generalized fractional derivatives and/or generalized fractional integrals. The appropriate Euler–Lagrange equations and natural boundary conditions are obtained. Moreover, Noether-type theorems (without transformation of time) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal OP (2006) Fractional variational calculus and the transversality conditions. J Phys A Math Gen 39(33):10375–10384

    Article  MATH  Google Scholar 

  • Agrawal OP (2007) Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J Vib Control 13(9–10):1217–1237

    Article  MATH  MathSciNet  Google Scholar 

  • Agrawal OP (2010) Generalized variational problems and Euler-Lagrange equations. Comput Math Appl 59(5):1852–1864

    Article  MATH  MathSciNet  Google Scholar 

  • Almeida R, Malinowska AB, Torres DFM (2010) A fractional calculus of variations for multiple integrals with application to vibrating string. J Math Phys 51(3):033503, 12 pp

    Google Scholar 

  • Almeida R, Pooseh S, Torres DFM (2012) Fractional variational problems depending on indefinite integrals. Nonlinear Anal 75(3):1009–1025

    Article  MATH  MathSciNet  Google Scholar 

  • Almeida R, Pooseh S, Torres DFM (2015) Computational methods in the fractional calculus of variations. Imperial College Press, London

    Book  Google Scholar 

  • Almeida R, Torres DFM (2009a) Holderian variational problems subject to integral constraints. J Math Anal Appl 359(2):674–681

    Article  MATH  MathSciNet  Google Scholar 

  • Almeida R, Torres DFM (2009b) Isoperimetric problems on time scales with nabla derivatives. J Vib Control 15(6):951–958

    Article  MATH  MathSciNet  Google Scholar 

  • Baleanu D, Muslih IS (2005) Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys Scr 72(2–3):119–121

    Article  MATH  MathSciNet  Google Scholar 

  • Blasjo V (2005) The isoperimetric problem. Amer Math Mon 112(6):526–566

    Article  MathSciNet  Google Scholar 

  • Camargo RF, Chiacchio AO, Charnet R, Capelas de Oliveira E (2009) Solution of the fractional Langevin equation and the Mittag-Leffler functions. J Math Phys 6:063507, 8 pp

    Google Scholar 

  • Cresson J (2007) Fractional embedding of differential operators and Lagrangian systems. J Math Phys 48(3):033504, 34 pp

    Google Scholar 

  • Curtis JP (2004) Complementary extremum principles for isoperimetric optimization problems. Optim Eng 5(4):417–430

    Article  MATH  MathSciNet  Google Scholar 

  • Dacorogna B, (2004) Introduction to the calculus of variations. Translated from the 1992 French original. Imperial College Press, London

    Google Scholar 

  • Evans LC (2010) Partial differential equations, vol 19. 2nd edn. Graduate studies in mathematics. American Mathematical Society, Providence

    Google Scholar 

  • Ferreira RAC, Torres DFM (2010) Isoperimetric problems of the calculus of variations on time scales. In: Leizarowitz A, Mordukhovich BS, Shafrir I, Zaslavski AJ (eds) Nonlinear analysis and optimization II. Contemporary mathematics. American Mathematical Society, Providence, pp 123–131

    Google Scholar 

  • Frederico GSF, Torres DFM (2008) Fractional conservation laws in optimal control theory. Nonlinear Dyn 53(3):215–222

    Article  MATH  MathSciNet  Google Scholar 

  • Frederico GSF, Torres DFM (2010) Fractional Noether’s theorem in the Riesz-Caputo sense. Appl Math Comput 217(3):1023–1033

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfand IM, Fomin SV (2000) Calculus of variations. Dover Publications Inc, New York

    MATH  Google Scholar 

  • Giaquinta M, Hildebrandt S (2004) Calculus of variations I. Springer, Berlin

    Book  Google Scholar 

  • Herrera L, Nunez L, Patino A, Rago H (1986) A variational principle and the classical and quantum mechanics of the damped harmonic oscillator. Am J Phys 54(3):273–277

    Article  Google Scholar 

  • Jost J, Li-Jost X (1998) Calculus of variations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. North-Holland mathematics studies. Elsevier, Amsterdam

    Google Scholar 

  • Malinowska AB (2012) A formulation of the fractional Noether-type theorem for multidimensional Lagrangians. Appl Math Lett 25(11):1941–1946

    Article  MATH  MathSciNet  Google Scholar 

  • Malinowska AB (2013) On fractional variational problems which admit local transformations. J Vib Control 19(8):1161–1169

    Article  MathSciNet  Google Scholar 

  • Malinowska AB, Torres DFM (2012) Introduction to the fractional calculus of variations. Imperial College Press, London

    Book  MATH  Google Scholar 

  • Noether E (1918) Invariante Variationsprobleme. Nachr v d Ges d Wiss zu Göttingen, pp 235–257

    Google Scholar 

  • Odzijewicz T (2013) Variable order fractional isoperimetric problem of several variables. Advances in the theory and applications of non-integer order systems 257:133–139

    Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2012a) Generalized fractional calculus with applications to the calculus of variations. Comput Math Appl 64(10):3351–3366

    Article  MATH  MathSciNet  Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2012b) Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal 75(3):1507–1515

    Article  MATH  MathSciNet  Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2012c) Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr Appl Anal 2012(871912):24

    Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2012d) Green’s theorem for generalized fractional derivatives. In: Chen W, Sun HG, Baleanu D (eds) Proceedings of FDA’2012, the 5th symposium on fractional differentiation and its applications, 14–17 May 2012, Hohai University, Nanjing, China. Paper #084

    Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2012e) Variable order fractional variational calculus for double integrals. In: Proceedings of the IEEE conference on decision and control 6426489:6873–6878

    Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2013a) Fractional variational calculus of variable order. Advances in harmonic analysis and operator theory, Operator theory: advances and applications, vol 229. Birkhäuser, Basel, pp 291–301

    Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2013b) Green’s theorem for generalized fractional derivative. Fract Calc Appl Anal 16(1):64–75

    Article  MathSciNet  Google Scholar 

  • Odzijewicz T, Malinowska AB, Torres DFM (2013c) Fractional calculus of variations of several independent variables. Eur Phys J Spec Top 222(8):1813–1826

    Google Scholar 

  • Odzijewicz T, Torres DFM (2011) Fractional calculus of variations for double integrals. Balkan J Geom Appl 16(2):102–113

    MATH  MathSciNet  Google Scholar 

  • Odzijewicz T, Torres DFM (2012) Calculus of variations with classical and fractional derivatives. Math Balkanica 26(1–2):191–202

    MATH  MathSciNet  Google Scholar 

  • Polyanin AD, Manzhirov AV (1998) Handbook of integral equations. CRC, Boca Raton

    Book  MATH  Google Scholar 

  • van Brunt B (2004) The calculus of cariations. Springer, New York

    Book  Google Scholar 

  • Young LC (1969) Lectures on the calculus of variations and optimal control theory. Foreword by Fleming WH, Saunders, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka B. Malinowska .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Malinowska, A.B., Odzijewicz, T., Torres, D.F.M. (2015). Standard Methods in Fractional Variational Calculus. In: Advanced Methods in the Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14756-7_4

Download citation

Publish with us

Policies and ethics