Skip to main content

Modeling the Effects of Climate Change on Disease Severity: A Case Study of Ceratonova (syn Ceratomyxa) shasta in the Klamath River

  • Chapter
  • First Online:
Book cover Myxozoan Evolution, Ecology and Development

Abstract

Shifts in future temperature and precipitation patterns will have profound effects on host-parasite interactions and the dynamics of disease in freshwater systems. The aims of this chapter are to present an overview of myxozoan disease dynamics in the context of climate change, and to illustrate how these might be predicted over the next several decades by developing a case study of disease dynamics of Ceratonova (syn Ceratomyxa) shasta in the Klamath River, California USA. Our case study introduces a model ensemble for predicting changes in disease dynamics under different climate scenarios (warm/dry, moderate/median, and cool/wet) from 2020 to 2060. The ensemble uses Global Circulation Models (GCMs) and basin scaled models for the Klamath River to generate predictions for future water temperature and river discharge. The environmental data are used as inputs for a predictive model and a degree day model to simulate effects of climate change on polychaete host populations and on C. shasta spore viability, respectively. Outputs from these models were then used to parameterize an epidemiological model to predict changes in disease dynamics under each climate scenario. The epidemiological model outputs were measured against baselines established using real data for low (2006), high (2008) and intermediate (2011) disease risk years. In general, the epidemiological model predicts that except for infrequent high discharge years, C. shasta dynamics will be similar to the high disease risk baseline (2008). This suggests that the recovery and management of Klamath River salmon will continue to be impacted by C. shasta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander JD, Hallett SL, Stocking RW et al (2014) Host and parasite populations after a ten year flood: Manayunkia speciosa and Ceratonova (syn Ceratomyxa) shasta in the Klamath River. Northwest Sci 88:219–233

    Article  Google Scholar 

  • Allen MB, Bergersen E (2002) Factors influencing the distribution of Myxobolus cerebralis, the causative agent of whirling disease in the Cache la Poudre River, Colorado. Dis Aquat Org 49:51–60

    Article  PubMed  Google Scholar 

  • Altizer S, Osterfeld RS, Johnson PT et al (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science 341:514–519

    Google Scholar 

  • Barr BR, Koopman MF, Williams CD et al (2010) Preparing for climate change in the Klamath Basin. The Resource Innovation Group. http://www.theresourceinnovationgroup.org/storage/KlamCFFRep_5-26-10finalLR.pdf. Accessed 13 Nov 2014

  • Baldwin TJ, Vincent ER, Silflow RM, Stanek D (2000) Myxobolus cerebralis infection in rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) exposed under natural stream conditions. J Vet Diagn Invest 12:312–321

    Article  CAS  PubMed  Google Scholar 

  • Bettge K, Wahli T, Segner H et al (2009) Proliferative kidney disease in rainbow trout: time- and temperature-related renal pathology and parasite distribution. Dis Aquat Org 83:67–76

    Article  PubMed  Google Scholar 

  • Bjork SJ (2010) Factors affecting the Ceratomyxa shasta infectious cycle and transmission between polychaete and salmonid hosts. PhD dissertation Oregon State University

    Google Scholar 

  • Bjork SJ, Bartholomew JL (2009) The effects of water velocity on the Ceratomyxa shasta infectious cycle. J Fish Dis 32:131–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blazer VS, Waldrop TB, Schill WB et al (2003) Effects of water temperature and substrate type on spore production and release in eastern Tubifex tubifex worms infected with Myxobolus cerebralis. J Parasitol 89:21–26

    Article  PubMed  Google Scholar 

  • Chaves LF, Pascual M (2006) Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PloS Med 3:1320–1328

    Article  Google Scholar 

  • Chiaramonte LV (2013) Climate warming effects on the life cycle of the parasite Ceratomyxa shasta in salmon of the Pacific Northwest. Master’s thesis Oregon State University

    Google Scholar 

  • Ching HL, Munday DR (1984) Geographic and seasonal distribution of the infectious stage of Ceratomyxa shasta Noble, 1950, a myxozoan salmonid pathogen in the Fraser River system. Can J Zool 62:1075–1080

    Article  Google Scholar 

  • El-Matbouli M, Hoffman G (2002) Influence of water quality on the outbreak of proliferative kidney disease-field studies and exposure experiments. J Fish Dis 25:459–467

    Article  Google Scholar 

  • El-Matbouli M, McDowell TS, Antonio DB et al (1999) Effect of water temperature on the development, release and survival of the triactinomyxon stage of Myxobolus cerebralis in its oligochaete host. Int J Parasitol 29:627–641

    Article  CAS  PubMed  Google Scholar 

  • Flint LE, Flint AL (2008) A basin-scale approach to estimating stream temperatures of tributaries to the Lower Klamath River, California. J Environ Qual 37:57–68. doi:10.2134/jeq2006.0341

    Article  CAS  PubMed  Google Scholar 

  • Foott S, Stone R, Wisemen E et al (2007) Longevity of Ceratomyxa shasta and Parvicapsula minibicornis actinospore infectivity in the Klamath River. J Aquat Anim Health 19:77–83

    Article  PubMed  Google Scholar 

  • Frei C, Schöll R, Fukutome S et al (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111

    Google Scholar 

  • Fujiwara M, Mohr MS, Greenberg A et al (2011) Effects of ceratomyxosis on population dynamics of Klamath fall-run Chinook salmon. Trans Am Fish Soc 140:1380–1391

    Article  Google Scholar 

  • Gerten D, Adrian R (2001) Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol Oceanogr 46:448–455

    Article  Google Scholar 

  • Greimann BP, Varyu D, Godaire J et al (2011) Hydrology, hydraulics and sediment transport studies for the secretary's determination on Klamath River Dam removal and basin restoration: Bureau of Reclamation, Mid-Pacific Region, Technical Service Center, Denver, Colorado, Technical Report No. SRH-2011-02, 762p

    Google Scholar 

  • Griffin MJ, Wise DJ, Camus AC et al (2008) A real-time polymerase chain reaction assay for the detection of the myxozoan parasite Henneguya ictaluri in channel catfish. J Vet Diagn Invest 20:559–566

    Article  PubMed  Google Scholar 

  • Hallett SL, Bartholomew JL (2006) Application of a real-time PCR assay to detect and quantify the myxozoan parasite Ceratomyxa shasta in river water samples. Dis Aquat Org 71:109

    Article  CAS  PubMed  Google Scholar 

  • Hallett SL, Bartholomew JL (2008) Effects of water flow on the infection dynamics of Myxobolus cerebralis. Parasitology 135:371–384

    Article  CAS  PubMed  Google Scholar 

  • Hallett SL, Bartholomew JL (2011) Myxobolus cerebralis and Ceratomyxa shasta. In: Woo PTK, Buckmann K (eds) Fish parasites: pathobiology and protection. CABI International, Wallingford

    Google Scholar 

  • Hallett SL, Ray RA, Hurst CN et al (2012) Density of the waterborne parasite Ceratomyxa shasta and its biological effects on salmon. Appl Environ Microbiol 78:3724–3731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliday MM (1973) Studies on Myxosoma cerebralis, a parasite of salmonids. II. The development and pathology of Myxosoma cerebralis, in experimentally infected rainbow trout (Salmo gairdneri) fry reared at different water temperature. Nord Vet Med 25:349–358

    CAS  PubMed  Google Scholar 

  • Hartikainen H, Johnes P, Moncrieff C et al (2009) Bryozoan populations reflect nutrient enrichment and productivity gradients in rivers. Freshw Biol 54:2320–2334

    Article  CAS  Google Scholar 

  • Hartikainen H, Okamura B (2012) Castrating parasites and colonial hosts. Parasitology 139:547–556

    Article  CAS  PubMed  Google Scholar 

  • Hedrick RP, McDowell TS, Mukkatira K et al (2008) Effects of freezing, drying, ultraviolet irradiation, chlorine, and quaternary ammonium treatments on the infectivity of myxospores of Myxobolus cerebralis for Tubifex tubifex. J Aquat Anim Health 20:116–125

    Article  PubMed  Google Scholar 

  • Hogg ID, Williams DD (1996) Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77:395–407

    Article  Google Scholar 

  • Hogg ID, Williams DD, Eadie JM et al (1995) The consequences of global warming for stream invertebrates: a field simulation. J Therm Biol 20:199–206

    Article  Google Scholar 

  • Holmes JC (1996) Parasites as threats to biodiversity in shrinking ecosystems. Biodivers Conserv 5:975–983

    Article  Google Scholar 

  • Izyumova NA (1987) Parasitic fauna of reservoir fishes of the USSR and its evolution. Amerind Publishing Co. Pvt. Ltd, New Delhi

    Google Scholar 

  • Jordan MS (2012) Hydraulic predictors and seasonal distribution of Manayunkia speciosa density in the Klamath River, CA, with implications for ceratomyxosis, a disease of salmon and trout. Master’s thesis Oregon State University

    Google Scholar 

  • Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Ann NY Acad Sci 1134:1–24

    Article  PubMed  Google Scholar 

  • Kaeser AJ, Rasmussen C, Sharpe WE (2006) An examination of environmental factors associated with Myxobolus cerebralis infection of wild trout in Pennsylvania. J Aquat Anim Health 18:90–100

    Article  Google Scholar 

  • Kallert DM, El-Matbouli M (2008) Differences in viability and reactivity of actinospores of three myxozoan species upon ageing. Folia Parasitol 55:105–110

    Article  PubMed  Google Scholar 

  • Kerans BL, Stevens RI, Lemmon JC (2005) Water temperature affects a host-parasite interaction: Tubifex tubifex and Myxobolus cerebralis. J Aquat Anim Health 17:216–221

    Article  Google Scholar 

  • Marcogliese DJ (2001) Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool 79:1331–1352

    Article  Google Scholar 

  • Moss BS, Kosten M, Meerhoff RW et al (2011) Allied attack: climate change and eutrophication. Inland Wat 1:101–105

    Article  Google Scholar 

  • Mote PW (2003) Trends in temperature and precipitation in the Pacific Northwest. Northwest Sci 77:271–282

    Google Scholar 

  • Ogden NH, Maarouf A, Barker IK et al (2006) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36:63–70

    Article  CAS  PubMed  Google Scholar 

  • Okamura B, Hartikainen H, Schmidt-Posthaus H et al (2011) Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshw Biol 56:735–753

    Article  Google Scholar 

  • Olwoch JM, Rautenbach C de W, Erasmus BFN et al (2003) Simulating tick distributions over sub-Saharan Africa: the use of observed and simulated climate surfaces. J Biogeogr 30:1221–1232

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Patz JA, Githeko AK, McCarty JP et al (2003) Climate change and infectious diseases. In: McMichael A, Campbell-Lendrum D, Corvalán C et al (eds) Climate change and human health: risks and response. World Health Organization, Geneva

    Google Scholar 

  • Peñuelas J, Filella I, Zhang X et al (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846

    Article  Google Scholar 

  • Perry RW, Risley JC, Brewer SJ et al (2011) Simulating daily water temperatures of the Klamath River under dam removal and climate change scenarios. U.S. Geological survey open file report 1243 78p. http://pubs.usgs.gov/of/2011/1243/pdf/ofr20111243.pdf. Accessed 12 Nov 2014

  • Poff NL (1992) Why disturbances can be predictable: a perspective on the definition of disturbance in streams. J North Am Benthol Soc 11:86–92

    Article  Google Scholar 

  • Ray RA (2013) Modeling abiotic influences on disease dynamics for the complex life cycle of the myxozoan parasite Ceratomyxa shasta. PhD thesis Oregon State University

    Google Scholar 

  • Ray RA, Bartholomew JL (2013) Estimation of transmission dynamics of the Ceratomyxa shasta actinospore to the salmonid host. Parasitology 140:907–916

    Article  CAS  PubMed  Google Scholar 

  • Ray RA, Rossignol PA, Bartholomew JL (2010) Mortality threshold for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an epidemiological model of Ceratomyxa shasta. Dis Aquat Org 93:63–70

    Article  PubMed  Google Scholar 

  • Ray RA, Holt RA, Bartholomew JL (2012) Relationship between temperature and Ceratomyxa shasta-induced mortality in Klamath River salmonids. J Parasitol 98:520–526

    Article  PubMed  Google Scholar 

  • Regonda SK, Rajagopalan B, Clark M et al (2005) Seasonal cycle shifts in hydroclimatology over the western United States. J Climat 18:372–384

    Article  Google Scholar 

  • Richter A, Kolmes SA (2005) Maximum temperature limits for Chinook, coho, and chum salmon, and steelhead trout in the Pacific Northwest. Rev Fish Sci 13:23–49

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Solomon S, Qin D, Manning M et al (2007) Climate Change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, ISBN: 978-0-521-88009-1 (pb: 978-0-521-70596-7). Accessed 13 Nov 2014

    Google Scholar 

  • Stocking RW, Holt RA, Foott JS et al (2006) Spatial and temporal occurrence of the salmonid parasite Ceratomyxa shasta in the Oregon-California Klamath River Basin. J Aquat Anim Health 18:194–202

    Article  Google Scholar 

  • Tops S, Lockwood W, Okamura B (2006) Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines. Dis Aquat Org 70:227

    Article  CAS  PubMed  Google Scholar 

  • True K, Bolick A, Foott J (2011) Myxosporean parasite (Ceratomyxa shasta and Parvicapsula minibicornis) annual prevalence of infection in Klamath River basin juvenile Chinook salmon, Apr-Aug 2010. US Fish and Wildlife Service. California-Nevada Fish Health Center, Anderson, CA

    Google Scholar 

  • True K, Bolick A, Foott J (2013) Myxosporean parasite (Ceratomyxa shasta and Parvicapsula minibicornis) annual prevalence of infection in Klamath River basin juvenile Chinook salmon, April-August 2012. US Fish and Wildlife Service. California-Nevada Fish Health Center, Anderson, CA

    Google Scholar 

  • Udey LR, Fryer JL, Pilcher KS (1975) Relation of water temperature to ceratomyxosis in rainbow trout (Salmon gairdneri) and coho salmon (Oncorhynchus kisutch). J Fish Res Board Can 32:1545–1551

    Article  Google Scholar 

  • Wright KA, Goodman DH, Som NA et al (2014) Development of two-dimensional hydraulic models to predict distribution of Manayunkia speciosa in the Klamath River. US Fish and Wildlife Service. Arcata Fish and Wildlife Office, Arcata Fisheries Technical Report Number TP 2014-19, Arcata, CA

    Google Scholar 

  • Yokoyama H, Ogawa K, Wakabayashi H (1995) Some biological characteristics of actinosporeans spores of Myxobolus cultus to skin mucus of goldfish Carassius auratus. Dis Aquat Org 21:7–11

    Article  Google Scholar 

  • Zhou X-N, Yang G-J, Yang K et al (2008) Potential impact of climate change on schistosomiasis transmission in China. Am J Trop Med Hyg 78:188

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katrina Wright, USFWS Arcata, CA office for the 2DHM outputs and Russell Perry, USGS, for providing data and assistance with its interpretation for the environmental data models. This work was supported by Oregon Sea Grant under project number R/BT-47 and award number NA10OAR4170059 from the National Oceanic and Atmospheric Administration’s National Sea Grant College Program, U.S. Department of Commerce, and by appropriations made by the Oregon State Legislature. The findings, conclusions and recommendations are those of the authors and do not necessarily reflect the views of these funding bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Adam Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adam Ray, R., Alexander, J.D., De Leenheer, P., Bartholomew, J.L. (2015). Modeling the Effects of Climate Change on Disease Severity: A Case Study of Ceratonova (syn Ceratomyxa) shasta in the Klamath River. In: Okamura, B., Gruhl, A., Bartholomew, J. (eds) Myxozoan Evolution, Ecology and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14753-6_19

Download citation

Publish with us

Policies and ethics