Skip to main content

A New Filter Approach Based on Generalized Data Field

  • Conference paper
Advanced Data Mining and Applications (ADMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8933))

Included in the following conference series:

Abstract

In this paper, a new feature selection method based on generalized data field (FR-GDF) is proposed. The goal of feature selection is selecting useful features and simultaneously excluding garbage features from a given feature set. It is Important to measure the “distance” between data points in existing feature selection approaches. To measure the “distance”, FR-GDF adopts potential value of data field. Information entropy of potential value is used to measure the inter-class distance and intra-class distance. This method eliminates unimportant or noise features of original feature sets and extracts the optional features. Experiments prove that FR-GDF algorithm performs well and is independent of the specific classification algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley&Sons, New York (2001)

    MATH  Google Scholar 

  2. Langley, P.: Selection of relevant features in machine learning. In: Proc of the AAAI Fall Symposium on Relevance, Menlo Park,CA, pp. 140–144 (1994)

    Google Scholar 

  3. Jolifie, I.T.: Principal component analysis. Springer, New York (1986)

    Book  Google Scholar 

  4. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 5 (1994)

    Google Scholar 

  5. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17(3), 1–12 (2005)

    Article  MATH  Google Scholar 

  6. Estevez, P.A., Tesmer, M., Perez, C., Zurada, J.M.: Normalized Mutual Information Feature Selection. IEEE Transactions on Neural Networks, 1045–9227 (2009)

    Google Scholar 

  7. Mitra, P., Murthy, C., Pal, S.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell, 301–312 (2002)

    Google Scholar 

  8. Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151, 155–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dash, M., Choi, K., Scheuermann, P., Liu, H.: Feature selection for clustering – a filter solution. In: Second IEEE International Conference on Data Mining, p. 115 (2002)

    Google Scholar 

  10. Ho, T., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24, 289–300 (2002)

    Article  Google Scholar 

  11. Guan, Y., Wang, H., Wang, Y., Yang, F.: Attribute reduction and optimal decision rules acquisition for continuous valued information systems. Inf. Sci. 179, 2974–2984 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  13. Wei, H.-L., Billings, S.A.: Feature Subset Selection and Ranking for Data Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 162–166 (2007)

    Article  Google Scholar 

  14. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository [EB/OL]. School of Inf.andCompSci, Univ of California, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  15. Pnevmatikakis, A., Polymenakos, L.: Comparison of Eigenface Based Feature vectors under Different Impairments. In: Proceedings of the17th International Conference on Patten Recognition(ICPR), vol. (l), pp. 296–299 (2004)

    Google Scholar 

  16. Hand, D.J., Yu, K.: Idiot’s Bayes: Not So Stupid After All Internat. Statist. Rev. 69, 385–398 (2001)

    MATH  Google Scholar 

  17. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  18. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc. (1995)

    Google Scholar 

  19. Loog, M., Duin, R.P.W., Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted pairwise fisher criteria. IEEE Trans. PAMI 23(7), 762–766 (2001)

    Article  Google Scholar 

  20. Yu, K., Ji, L., Zhang, X.G.: Kernel nearestneighbor algorithm. Neural Process.Lett 15, 147–156 (2002)

    Article  MATH  Google Scholar 

  21. Saari, P., Eerola, T., Lartillot, O.: Generalizability and simplicity as criteria infeature selection: application to mood classification in music. IEEE Transactionson Audio, Speech, and Language Processing 19(6), 1802–1812 (2011)

    Article  Google Scholar 

  22. Wright, J., Yang, A.Y., Ganesh, A.: Robust face recognition via sparserepresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  23. Bishop, C.: Neural networks for pattern recognition [M]. Clarendon Press, Oxford (1995)

    Google Scholar 

  24. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances inNeural Information Processing Systems, pp. 507–514 (2006)

    Google Scholar 

  25. Zhang, D., Chen, S., Zhou, Z.H.: Constraint Score: A new filter method for featureselection with pairwise constraints. Pattern Recognition 41(5), 1440–1451 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, L., Wang, S., Lin, Y. (2014). A New Filter Approach Based on Generalized Data Field. In: Luo, X., Yu, J.X., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2014. Lecture Notes in Computer Science(), vol 8933. Springer, Cham. https://doi.org/10.1007/978-3-319-14717-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14717-8_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14716-1

  • Online ISBN: 978-3-319-14717-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics