Skip to main content

Commercially Viable Ultra-Low Power Wireless

  • Chapter
Ultra-Low-Power Short-Range Radios

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 1700 Accesses

Abstract

This chapter looks at various practical aspects of architecting and designing low power wireless radios and systems-on-chip for applications such as consumer wearables, industrial automation etc. The chapter starts with a discussion on the need for industry accepted protocols for low power wireless and aspects in these protocols that lend themselves to low power implementations. With these protocols in place, we then look at practical design techniques of the RF/analog components, followed by a look at the Physical layer and the MAC and conclude the section by looking at the overall SoC design techniques for proper energy management. The chapter concludes by looking at the upcoming IEEE 802.11ah standard and discuss how this is adapted in an advantageous manner for low power wireless applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gartner, Forecast: The Internet of Things. Worldwide 2013, published 18 November, 2013

    Google Scholar 

  2. IHS Technology, Industrial Internet of Things – 2014 Edition

    Google Scholar 

  3. X. Huang et al., A 0 dBm 10 Mbps 2.4 GHz ultra-low power ASK/OOK transmitter with digital pulse shaping, in Radio Frequency Integrated Circuits Symposium (RFIC), May 2010, pp. 263–266

    Google Scholar 

  4. Z. Qi, K. Xiaofei, W. Nanjian, An ultra-low-power RF transceiver for WBANs in medical applications. J. Semicond. 1(6), 200--201 (2011)

    Google Scholar 

  5. J.M. Rabaey et al., PicoRadios for wireless sensor networks: the next challenge in ultra-low power design (ISSCC, 2002)

    Google Scholar 

  6. http://www.ti.com/tool/ti-rtos

  7. http://www.contiki-os.org

  8. http://www.freertos.org

  9. http://www.tinyos.net

  10. J. Bae et al., A 490 uW fully MICS compatible FSK transceiver for implantable devices, in 2009 Symposium on VLSI Circuits Digest of Technical Papers, pp. 36–37

    Google Scholar 

  11. S. Wu, B. Razavi, A 900-MHz/1.8-GHz CMOS receiver for dual-band applications. IEEE J. Solid-State Circuits 33, 2178–2185 (1998)

    Google Scholar 

  12. M. Vidojkovic et al., A 0.33 nJ/b IEEE802.15.6/proprietary-MICS/ISM band transceiver with scalable data-rate from 11 kb/s to 4.5 Mb/s for medical applications, in ISSCC, 2014, pp.170–172

    Google Scholar 

  13. S. Chakraborty et al., An ultra low power reconfigurable multi-standard transceiver using fully digital PLL, in Proc. Symp. VLSI Circuits, June 2013, pp. 148–149

    Google Scholar 

  14. R. Kumar et al., A fully integrated 2 × 2 b/g and 1 × 2 a-band MIMO WLAN SoC in 45 nm CMOS for multi-radio IC, in ISSCC, 2013

    Google Scholar 

  15. J. Masuch et al., A 1.1 mW RX −81.4 dBm sensitivity CMOS transceiver for Bluetooth low energy. IEEE Trans. Microw. Theory Tech. 61, 1660–1673 (2013)

    Google Scholar 

  16. Y.H. Liu et al., A 2.7 nJ/bit multi-standard 2.3/2.4 GHz polar transmitter for wireless sensor networks, ISSCC Dig. Tech. Papers, February 2012, pp. 448–450

    Google Scholar 

  17. R.E. Crochiere, L.R. Rabiner, Multirate Digital Signal Processing, Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632 (Prentice Hall, 1983)

    Google Scholar 

  18. T. Ha, S. Lee, J. Jim, Low-complexity correlation system for timing synchronization in IEEE802.11a wireless LANs, in Proceedings of Radio and Wireless Conference, 2003

    Google Scholar 

  19. J.C. Roh, A. Batra, S. Hosur, Packet detection and coarse symbol timing for rotated differential M-ary PSK modulated preamble signal, US Patent 8,630,374

    Google Scholar 

  20. H.-S. Kim, S.-J. Lee, M. Goel, Method, device, and digital circuitry for providing a closed-form solution to a scaled error locator polynomial used in BCH decoding, US Patent 8,392,806

    Google Scholar 

  21. P. Reviriego, C. Argyrides, J.A. Maestro, Efficient error detection in Double Error Correction BCH codes for memory applications. Microelectron. Reliab. 52(7), 1528–1530 (2012)

    Google Scholar 

  22. J. Kwong, Y.K. Ramadass, N. Verma, A.P. Chandrakasan, A 65 nm sub-Vt microcontroller with integrated SRAM and switched capacitor DC–DC converter. IEEE J. Solid-State Circuits 44(1), 115–126 (2009)

    Google Scholar 

  23. R. Tabrizian et al., A 27 MHz temperature compensated MEMS oscillator with sub-ppm instability, in IEEE 25th Int’l Conf. on Micro-Electro Mechanical Systems (MEMS), 29th January - 2nd February 2012, pp. 23--26

    Google Scholar 

  24. N. Fletcher, J.M. Rabaey, Ultra-Low Power Wakeup Receivers for Wireless Sensor Networks (EECS Department, University of California Berkeley, 2008)

    Google Scholar 

  25. X. Huang, S. Rampu, X. Wang, G. Dolmans, H. de Groot, A 2.4 GHz/915 MHz 51 μW wake-up receiver with offset and noise suppression, in IEEE Solid-State Circuits Conference, February 2010

    Google Scholar 

  26. The Bluetooth 4.0 specification: https://www.bluetooth.org/en-us/specification/adopted-specifications

  27. A. Xhafa, B. Campbell, S. Hosur, Towards a perpetual wireless sensor node, in IEEE 2013 Sensors Proceedings

    Google Scholar 

  28. W. Sun, M. Choi, S. Choi, IEEE 802.11ah: a long range 802.11 WLAN at sub 1 GHz. J. ICT Standardization 1(1), 83–108 (2013)

    Google Scholar 

  29. K.-H. Chen, H.-P. Ma, A low power ZigBee baseband processor, in Proceedings 2008 International SoC Conference, 24--25 November 2008, pp.~140--143

    Google Scholar 

  30. C.-C. Wangt et al., A 6.57 mW ZigBee transceiver for 868/915 MHz band (ISCAS, 2006), p.~45

    Google Scholar 

  31. IEEE Standard for Local and Metropolitan Area Networks – Part 15.6: Wireless Body Area Networks, 2012

    Google Scholar 

  32. http://www.arm.com/files/pdf/dspconceptsm4presentation.pdf

  33. http://www.ti.com/lit/an/swra347a/swra347a.pdf

  34. A. Dementyev, S. Hodges, S. Taylor, J. Smith, Power consumption analysis of Bluetooth low energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario, IEEE International Wireless Symposium, Beijing, China (2013). doi 10.1109/IEEE-WS.2013.6616827

  35. M. Meijer, J.P. de Gyvez, Technological boundaries of voltage and frequency scaling for power performance tuning, in Adaptive Techniques for Dynamic Processor Optimization, Springer Series on Integrated Circuits and Systems (2008), pp. 25–47

    Google Scholar 

  36. C.-M. Hsu et al., The low power MICS band biotelemetry architecture and its LNA design for implantable applications, in Solid-State Circuits Conference, 2006, ASSCC 2006 (IEEE Asian), pp. 435–438

    Google Scholar 

  37. F. Wang et al., Wideband envelope elimination and restoration power amplifier with high efficiency wide band envelope amplifier for WLAN 802.11g applications, in Proc. IEEE Int’l Microwave Symp., 2005, pp. 645–648

    Google Scholar 

  38. IMS Report on Consumer and Wearable Applications – August 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangadhar Burra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burra, G., Hosur, S., Mukherjee, S., Lachhwani, A., Debnath, S. (2015). Commercially Viable Ultra-Low Power Wireless. In: Mercier, P., Chandrakasan, A. (eds) Ultra-Low-Power Short-Range Radios. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14714-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14714-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14713-0

  • Online ISBN: 978-3-319-14714-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics