Advertisement

Commercially Viable Ultra-Low Power Wireless

  • Gangadhar Burra
  • Srinath Hosur
  • Subhashish Mukherjee
  • Ashish Lachhwani
  • Sankar Debnath
Part of the Integrated Circuits and Systems book series (ICIR)

Abstract

This chapter looks at various practical aspects of architecting and designing low power wireless radios and systems-on-chip for applications such as consumer wearables, industrial automation etc. The chapter starts with a discussion on the need for industry accepted protocols for low power wireless and aspects in these protocols that lend themselves to low power implementations. With these protocols in place, we then look at practical design techniques of the RF/analog components, followed by a look at the Physical layer and the MAC and conclude the section by looking at the overall SoC design techniques for proper energy management. The chapter concludes by looking at the upcoming IEEE 802.11ah standard and discuss how this is adapted in an advantageous manner for low power wireless applications.

Keywords

IoT Internet of things Low power wireless IEEE 802.15.6 IEEE 802.11ah BLE (Bluetooth Low Energy) BAN (Body Area Networks) Polar modulation SoC Energy management 

References

  1. 1.
    Gartner, Forecast: The Internet of Things. Worldwide 2013, published 18 November, 2013Google Scholar
  2. 2.
    IHS Technology, Industrial Internet of Things – 2014 EditionGoogle Scholar
  3. 3.
    X. Huang et al., A 0 dBm 10 Mbps 2.4 GHz ultra-low power ASK/OOK transmitter with digital pulse shaping, in Radio Frequency Integrated Circuits Symposium (RFIC), May 2010, pp. 263–266Google Scholar
  4. 4.
    Z. Qi, K. Xiaofei, W. Nanjian, An ultra-low-power RF transceiver for WBANs in medical applications. J. Semicond. 1(6), 200--201 (2011)Google Scholar
  5. 5.
    J.M. Rabaey et al., PicoRadios for wireless sensor networks: the next challenge in ultra-low power design (ISSCC, 2002)Google Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    J. Bae et al., A 490 uW fully MICS compatible FSK transceiver for implantable devices, in 2009 Symposium on VLSI Circuits Digest of Technical Papers, pp. 36–37Google Scholar
  11. 11.
    S. Wu, B. Razavi, A 900-MHz/1.8-GHz CMOS receiver for dual-band applications. IEEE J. Solid-State Circuits 33, 2178–2185 (1998)Google Scholar
  12. 12.
    M. Vidojkovic et al., A 0.33 nJ/b IEEE802.15.6/proprietary-MICS/ISM band transceiver with scalable data-rate from 11 kb/s to 4.5 Mb/s for medical applications, in ISSCC, 2014, pp.170–172Google Scholar
  13. 13.
    S. Chakraborty et al., An ultra low power reconfigurable multi-standard transceiver using fully digital PLL, in Proc. Symp. VLSI Circuits, June 2013, pp. 148–149Google Scholar
  14. 14.
    R. Kumar et al., A fully integrated 2 × 2 b/g and 1 × 2 a-band MIMO WLAN SoC in 45 nm CMOS for multi-radio IC, in ISSCC, 2013Google Scholar
  15. 15.
    J. Masuch et al., A 1.1 mW RX −81.4 dBm sensitivity CMOS transceiver for Bluetooth low energy. IEEE Trans. Microw. Theory Tech. 61, 1660–1673 (2013)Google Scholar
  16. 16.
    Y.H. Liu et al., A 2.7 nJ/bit multi-standard 2.3/2.4 GHz polar transmitter for wireless sensor networks, ISSCC Dig. Tech. Papers, February 2012, pp. 448–450Google Scholar
  17. 17.
    R.E. Crochiere, L.R. Rabiner, Multirate Digital Signal Processing, Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632 (Prentice Hall, 1983)Google Scholar
  18. 18.
    T. Ha, S. Lee, J. Jim, Low-complexity correlation system for timing synchronization in IEEE802.11a wireless LANs, in Proceedings of Radio and Wireless Conference, 2003Google Scholar
  19. 19.
    J.C. Roh, A. Batra, S. Hosur, Packet detection and coarse symbol timing for rotated differential M-ary PSK modulated preamble signal, US Patent 8,630,374Google Scholar
  20. 20.
    H.-S. Kim, S.-J. Lee, M. Goel, Method, device, and digital circuitry for providing a closed-form solution to a scaled error locator polynomial used in BCH decoding, US Patent 8,392,806Google Scholar
  21. 21.
    P. Reviriego, C. Argyrides, J.A. Maestro, Efficient error detection in Double Error Correction BCH codes for memory applications. Microelectron. Reliab. 52(7), 1528–1530 (2012)Google Scholar
  22. 22.
    J. Kwong, Y.K. Ramadass, N. Verma, A.P. Chandrakasan, A 65 nm sub-Vt microcontroller with integrated SRAM and switched capacitor DC–DC converter. IEEE J. Solid-State Circuits 44(1), 115–126 (2009)Google Scholar
  23. 23.
    R. Tabrizian et al., A 27 MHz temperature compensated MEMS oscillator with sub-ppm instability, in IEEE 25th Int’l Conf. on Micro-Electro Mechanical Systems (MEMS), 29th January - 2nd February 2012, pp. 23--26Google Scholar
  24. 24.
    N. Fletcher, J.M. Rabaey, Ultra-Low Power Wakeup Receivers for Wireless Sensor Networks (EECS Department, University of California Berkeley, 2008)Google Scholar
  25. 25.
    X. Huang, S. Rampu, X. Wang, G. Dolmans, H. de Groot, A 2.4 GHz/915 MHz 51 μW wake-up receiver with offset and noise suppression, in IEEE Solid-State Circuits Conference, February 2010Google Scholar
  26. 26.
  27. 27.
    A. Xhafa, B. Campbell, S. Hosur, Towards a perpetual wireless sensor node, in IEEE 2013 Sensors Proceedings Google Scholar
  28. 28.
    W. Sun, M. Choi, S. Choi, IEEE 802.11ah: a long range 802.11 WLAN at sub 1 GHz. J. ICT Standardization 1(1), 83–108 (2013)Google Scholar
  29. 29.
    K.-H. Chen, H.-P. Ma, A low power ZigBee baseband processor, in Proceedings 2008 International SoC Conference, 24--25 November 2008, pp.~140--143Google Scholar
  30. 30.
    C.-C. Wangt et al., A 6.57 mW ZigBee transceiver for 868/915 MHz band (ISCAS, 2006), p.~45Google Scholar
  31. 31.
    IEEE Standard for Local and Metropolitan Area Networks – Part 15.6: Wireless Body Area Networks, 2012Google Scholar
  32. 32.
  33. 33.
  34. 34.
    A. Dementyev, S. Hodges, S. Taylor, J. Smith, Power consumption analysis of Bluetooth low energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario, IEEE International Wireless Symposium, Beijing, China (2013). doi  10.1109/IEEE-WS.2013.6616827
  35. 35.
    M. Meijer, J.P. de Gyvez, Technological boundaries of voltage and frequency scaling for power performance tuning, in Adaptive Techniques for Dynamic Processor Optimization, Springer Series on Integrated Circuits and Systems (2008), pp. 25–47Google Scholar
  36. 36.
    C.-M. Hsu et al., The low power MICS band biotelemetry architecture and its LNA design for implantable applications, in Solid-State Circuits Conference, 2006, ASSCC 2006 (IEEE Asian), pp. 435–438Google Scholar
  37. 37.
    F. Wang et al., Wideband envelope elimination and restoration power amplifier with high efficiency wide band envelope amplifier for WLAN 802.11g applications, in Proc. IEEE Int’l Microwave Symp., 2005, pp. 645–648Google Scholar
  38. 38.
    IMS Report on Consumer and Wearable Applications – August 2012Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gangadhar Burra
    • 1
  • Srinath Hosur
    • 2
  • Subhashish Mukherjee
    • 3
  • Ashish Lachhwani
    • 4
  • Sankar Debnath
    • 3
  1. 1.Qualcomm Inc.San JoseUSA
  2. 2.Texas Instruments Inc.DallasUSA
  3. 3.Texas Instruments India Ltd.BangaloreIndia
  4. 4.Qualcomm India Pvt. Ltd.BangaloreIndia

Personalised recommendations