Skip to main content

Circuit Techniques for Ultra-Low Power Radios

  • Chapter
Ultra-Low-Power Short-Range Radios

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

As low power radio circuits are enabling new technology avenues such as health monitoring, efforts to tackle the design challenge of making extremely reliable yet lost cost, low power CMOS radios have gained prominence. Despite advancements in battery technology and energy harvesting, there remains a wide gap between the available and desired performance. Innovative system architectures and circuits need to be explored to bridge this gap. Over the last few years, there have been numerous sub-mW integrated system offerings that trade off performance and reliability to achieve low power consumption. At the same time, an ever growing list of applications has led to a number of commercial products that guarantee robust operation with power consumption in 10′s of mWs. However, a vast number of applications demand sub-mW power consumption or complete energy autonomy while demanding robust operation and high performance over a highly variable environment. Implantable systems are a prime example of this. In this chapter, we will begin with an overview of system considerations, application driven challenges, and proceed to discuss the existing design approaches to make the reader aware of the practical limitations of many of these techniques. We will then identify the fundamental design challenges and explore fresh angles to approach the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Adler, A study of locking phenomena in oscillators. Proc. IEEE 61(10), 1380–1385 (1973)

    Article  Google Scholar 

  2. I. Aoki, S. Kee, R. Magoon, R. Aparicio, F. Bohn, J. Zachan, G. Hatcher, D. McClymont, A. Hajimiri, A fully-integrated quad-band GSM/GPRS CMOS power amplifier. IEEE J. Solid-State Circuits 43(12), 2747–2758 (2008)

    Article  Google Scholar 

  3. J. Bae, N. Cho, H.-J. Yoo, A 490 μW fully MICS compatible FSK transceiver for implantable devices, in IEEE symposium on VLSI Circuits, June 2009

    Google Scholar 

  4. J. Bohorquez, A. Chandrakasan, J. Dawson, A 350 μW CMOS MSK transmitter and 400 μW OOK super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circuits 44(4), 1248–1259 (2009)

    Article  Google Scholar 

  5. P. Bradley, An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices, in IEEE Biomedical Circuits and Systems (BioCAS), 2006

    Google Scholar 

  6. G. Chien, P.R. Gray, A 900 MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications. IEEE J. Solid-State Circuits 35(12), 1996–1999 (2000)

    Article  Google Scholar 

  7. S. Cho, A.P. Chandrakasan, Energy efficient protocols for low duty cycle wireless microsensor networks, in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp. 2041–2044

    Google Scholar 

  8. A.J. Johansson, Performance of a radio link between a base station and a medical implant utilising the MICS standard, in IEEE International Conference on Engineering in Medicine and Biology Society, 1–5 Sept 2004, vol. 1, pp. 2113–2116

    Google Scholar 

  9. P. Kinget, R. Melville, D. Long, V. Gopinathan, An injection-locking scheme for precision quadrature generation. IEEE J. Solid-State Circuits 37(7), 845–851 (2002)

    Article  Google Scholar 

  10. K.-C. Liao, P.-S. Huang, W.-H. Chiu, T.-H. Lin, A 400 MHz/900 MHz/2.4 GHz multi-band FSK transmitter in 0.18 μm CMOS, in IEEE Asian Solid-State Circuits Conference, 2009, pp. 353–356

    Google Scholar 

  11. Y.-H. Liu, H.-H. Liu, T.-H. Lin, A super-regenerative ASK receiver with Δ Σ pulse-width digitizer and SAR-based fast frequency calibration for MICS applications, in IEEE Symposium on VLSI Circuits, 2009, pp. 38–39

    Google Scholar 

  12. F. Merli, Implantable antennas for biomedical applications, Ph.D. thesis, EPFL, 2011

    Google Scholar 

  13. T. Morrison, F. Zhang, S. Rai, J. Pandey, J. Holleman, B. Otis, The Bumblebee: a 0.3 gram, 560 μW, 0.1 cm3 wireless biosignal interface with 10 m range, in IEEE 47th DAC/ISSCC Student Design Contest, June 2010

    Google Scholar 

  14. J. Pandey, B. Otis, A 90 μW MICS/ISM band transmitter with 22 % global efficiency, in IEEE Symposium on Radio Frequency Integrated Circuits, 2010, pp. 285–288

    Google Scholar 

  15. A.-S. Porret, T. Melly, D. Python, C.C. Enz, E.A. Vittoz, An ultra low-power UHF transceiver integrated in a standard digital CMOS process: architecture and receiver. IEEE J. Solid-State Circuits 36(3), 452–466 (2001)

    Article  Google Scholar 

  16. S. Rai, J. Holleman, J. Pandey, F. Zhang, B. Otis, A 500 μW neural tag with 2 μ V rms AFE and frequency-multiplying MICS/ISM FSK transmitter, in IEEE International Conference on Solid-State Circuits, Feb 2009

    Google Scholar 

  17. B. Razavi, J.M.J. Sung, A 6 GHz 60 mW BiCMOS phase-locked loop. IEEE J. Solid-State Circuits 29(12), 1560–1565 (1994)

    Article  Google Scholar 

  18. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, V. Sundararajan, Improving power output for vibration based energy scavengers. IEEE Pervasive Comput. 4(1), 28–36 (2005)

    Article  Google Scholar 

  19. B. Sutton, P. Stadnik, J. Nelson, L. Stotts, Probability of interference between LP-LDC and LBT MICS implants in a medical care facility, in IEEE Engineering in Medicine and Biology Society, 2007, pp. 6721–6725

    Google Scholar 

  20. E.A. Vittoz, M.G.R. Degrauwe, S. Bitz, High-performance crystal oscillator circuits: theory and application. IEEE J. Solid-State Circuits 23(3), 774–783 (1988)

    Article  Google Scholar 

  21. R.J.M. Vullers, R.V. Schaijk, H.J. Visser, J. Penders, C.V. Hoof, Energy harvesting for autonomous wireless sensor networks. IEEE Solid State Circuits Mag. 2, 29–38 (2010)

    Article  Google Scholar 

  22. K. Wang, J. Koo, R. Ruby, B. Otis, A 1.8 mW PLL-free channelized 2.4 GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator, in IEEE Conference on International Solid State Circuits (ISSCC), Feb 2014

    Google Scholar 

  23. D.J. Yeager, J. Holleman, R. Prasad, J.R. Smith, B.P. Otis, NeuralWISP: a wirelessly powered neural interface with 1 m range. IEEE Trans. Biomed. Circuits Syst. 3(6), 379–387 (2009)

    Article  Google Scholar 

  24. D. Yeager, F. Zhang, A. Zarrasvand, B.P. Otis, A 9.2 μA gen 2 compatible UHF RFID sensing tag with -12 dBm sensitivity and 1.25 μ V rms input-referred noise floor, in IEEE International Conference on Solid-State Circuits, 2010, pp. 52–53

    Google Scholar 

  25. W. Zhuo, X. Li, S. Shekhar, S.H.K. Embabi, J.P. de Gyvez, D.J. Allstot, E. Sanchez-Sinencio, A capacitor cross-coupled common-gate low-noise amplifier. IEEE Trans. Circuits Syst. Express Briefs 52(12), 875–879 (2005)

    Article  Google Scholar 

  26. http://content.healthaffairs.org/content/27/2/w145.full.pdf

  27. http://www.usgovernmentspending.com/federal_budget_fy13

  28. http://www.who.int/mediacentre/factsheets/fs310/en/

  29. http://wireless.fcc.gov/services/index.htm?job=service_home&idmedical_implant

  30. http://scholar.lib.vt.edu/ejournals/JOTS/v35/v35n1/pdf/yildiz.pdf

  31. http://www.microbattery.com/tech-duracell-hearing-aid-battery

  32. http://www.dmcinfo.com/Portals/0/Blog%20Files/High%20pulse%20drain%20impact%20on%20CR2032%20coin%20cell%20battery%20capacity.pdf

  33. http://www.excellatron.com/advantage.htm

  34. http://edocket.access.gpo.gov/cfr_2008/octqtr/47cfr15.242.htm

  35. http://focus.ti.com/lit/ds/swrs061f/swrs061f.pdf

  36. http://w3.antd.nist.gov/ban/15-08-0519-01-0006.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pandey, J., Otis, B. (2015). Circuit Techniques for Ultra-Low Power Radios. In: Mercier, P., Chandrakasan, A. (eds) Ultra-Low-Power Short-Range Radios. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14714-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14714-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14713-0

  • Online ISBN: 978-3-319-14714-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics